• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 195,  comments - 30,  trackbacks - 0

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

             

             

            V A S E S

             

             

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers.

            ASSUMPTIONS

            1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F. F ≤ V ≤ 100 where V is the number of vases. -50 ≤ Aij ≤ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Input

            The first line contains two numbers: F and V.

            The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

            Notice: The input contains several test cases.

            Output

            The output line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            這題可以用搜索過,但是還可以用dp
            用result[i][j]表示前i行,以j結尾的排法的最大值,
            rsult[1][j]直接初始化為num[i][j];其余初始化為負無窮
            dp的過程就是
                for(i=2;i<-r;i++)//行逐漸增加
                      for(j=i;j<=c;j++)//列必須大于等于行號,否則無法保證從左上方到右下方
                                for(k=1;k<j;k++)
                                           if(result[i][j]<result[i-1][k]+num[i][j])//無需擔心不是從左上方到右下方,因為若i<j,result[][]賦為了負無窮
                                                           result[i][j]=result[i-1][k]+num[i][j]
            更詳細的代碼可以到蘇強的博客http://download.csdn.net/user/china8848/獲得
            posted on 2009-07-14 10:05 luis 閱讀(248) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            常用鏈接

            留言簿(3)

            隨筆分類

            隨筆檔案

            文章分類

            文章檔案

            友情鏈接

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            久久本道久久综合伊人| 色噜噜狠狠先锋影音久久| 亚洲婷婷国产精品电影人久久| 办公室久久精品| 一日本道伊人久久综合影| 久久久久亚洲精品天堂| 国产成人久久精品麻豆一区| 无码任你躁久久久久久| 国产亚洲美女精品久久久久狼| 久久播电影网| 国产精品一区二区久久不卡| 久久久久久国产精品免费免费| 国产亚洲精品美女久久久| 久久久久女教师免费一区| 国产精品99久久99久久久| 亚洲伊人久久综合中文成人网| 一级做a爰片久久毛片16| 囯产精品久久久久久久久蜜桃 | 久久天天躁狠狠躁夜夜网站 | 99久久国产宗和精品1上映 | 久久精品人妻中文系列| 久久97久久97精品免视看| 久久久久人妻精品一区| 噜噜噜色噜噜噜久久| 久久亚洲国产精品123区| 久久国产精品一区二区| 久久久久国产精品熟女影院 | 丁香色欲久久久久久综合网| 亚洲国产成人精品女人久久久 | 久久99国产一区二区三区| 91精品国产高清久久久久久io| 国内精品伊人久久久久777| 波多野结衣久久一区二区| 久久亚洲国产精品123区| 久久精品国产亚洲7777| 久久精品中文字幕一区| 很黄很污的网站久久mimi色| 国产高清国内精品福利99久久| 99精品久久久久久久婷婷| 狠狠精品久久久无码中文字幕| 精品视频久久久久|