• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 195,  comments - 30,  trackbacks - 0

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

             

             

            V A S E S

             

             

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers.

            ASSUMPTIONS

            1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F. F ≤ V ≤ 100 where V is the number of vases. -50 ≤ Aij ≤ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Input

            The first line contains two numbers: F and V.

            The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

            Notice: The input contains several test cases.

            Output

            The output line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            這題可以用搜索過,但是還可以用dp
            用result[i][j]表示前i行,以j結(jié)尾的排法的最大值,
            rsult[1][j]直接初始化為num[i][j];其余初始化為負(fù)無窮
            dp的過程就是
                for(i=2;i<-r;i++)//行逐漸增加
                      for(j=i;j<=c;j++)//列必須大于等于行號(hào),否則無法保證從左上方到右下方
                                for(k=1;k<j;k++)
                                           if(result[i][j]<result[i-1][k]+num[i][j])//無需擔(dān)心不是從左上方到右下方,因?yàn)槿鬷<j,result[][]賦為了負(fù)無窮
                                                           result[i][j]=result[i-1][k]+num[i][j]
            更詳細(xì)的代碼可以到蘇強(qiáng)的博客http://download.csdn.net/user/china8848/獲得
            posted on 2009-07-14 10:05 luis 閱讀(248) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 動(dòng)態(tài)規(guī)劃
            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            常用鏈接

            留言簿(3)

            隨筆分類

            隨筆檔案

            文章分類

            文章檔案

            友情鏈接

            搜索

            •  

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            18禁黄久久久AAA片| 奇米影视7777久久精品人人爽| 亚洲国产欧洲综合997久久| 久久精品天天中文字幕人妻| 久久国产精品99精品国产987| 久久久久亚洲精品无码网址| 久久人妻少妇嫩草AV蜜桃| 99久久99这里只有免费的精品| 国产激情久久久久影院| 狠狠色丁香婷婷久久综合五月| 青青草原精品99久久精品66| 久久精品国产亚洲Aⅴ香蕉| 色婷婷综合久久久久中文一区二区| 91久久婷婷国产综合精品青草 | 久久无码一区二区三区少妇| 久久久久国产精品人妻| 国内精品久久久久久麻豆| 亚洲AV日韩AV永久无码久久| 国产成人无码精品久久久久免费| 色婷婷综合久久久久中文一区二区 | 性做久久久久久久| 欧美色综合久久久久久| 亚洲国产二区三区久久| 久久精品无码一区二区无码| 久久这里的只有是精品23| 久久国产热这里只有精品| 欧美久久精品一级c片片| 久久精品国产亚洲AV无码偷窥| 久久久亚洲AV波多野结衣| 亚洲国产成人精品91久久久 | 久久精品国产男包| 久久综合伊人77777麻豆| 国产精品午夜久久| 国産精品久久久久久久| 青青青国产精品国产精品久久久久| 久久人爽人人爽人人片AV| 久久AV高潮AV无码AV| 97久久国产露脸精品国产| 无码精品久久一区二区三区| 久久久久噜噜噜亚洲熟女综合| 99久久国产亚洲高清观看2024 |