• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 195,  comments - 30,  trackbacks - 0

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

             

             

            V A S E S

             

             

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers.

            ASSUMPTIONS

            1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F. F ≤ V ≤ 100 where V is the number of vases. -50 ≤ Aij ≤ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Input

            The first line contains two numbers: F and V.

            The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

            Notice: The input contains several test cases.

            Output

            The output line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            這題可以用搜索過,但是還可以用dp
            用result[i][j]表示前i行,以j結尾的排法的最大值,
            rsult[1][j]直接初始化為num[i][j];其余初始化為負無窮
            dp的過程就是
                for(i=2;i<-r;i++)//行逐漸增加
                      for(j=i;j<=c;j++)//列必須大于等于行號,否則無法保證從左上方到右下方
                                for(k=1;k<j;k++)
                                           if(result[i][j]<result[i-1][k]+num[i][j])//無需擔心不是從左上方到右下方,因為若i<j,result[][]賦為了負無窮
                                                           result[i][j]=result[i-1][k]+num[i][j]
            更詳細的代碼可以到蘇強的博客http://download.csdn.net/user/china8848/獲得
            posted on 2009-07-14 10:05 luis 閱讀(251) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            常用鏈接

            留言簿(3)

            隨筆分類

            隨筆檔案

            文章分類

            文章檔案

            友情鏈接

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            国产精品女同久久久久电影院| 久久香蕉国产线看观看乱码| 狠狠色丁香婷婷综合久久来来去| 久久国产成人午夜aⅴ影院| 国产ww久久久久久久久久| 日韩AV毛片精品久久久| 久久久国产99久久国产一| 97久久超碰国产精品旧版| 久久综合鬼色88久久精品综合自在自线噜噜| 久久人人爽人人爽人人片AV高清 | 久久久久久国产精品无码超碰| 久久亚洲国产欧洲精品一| 久久久久亚洲精品日久生情 | 欧美精品乱码99久久蜜桃| 国产综合成人久久大片91| 国产精品99久久久精品无码| 一本色道久久综合狠狠躁篇| 久久精品一区二区三区中文字幕| 久久男人Av资源网站无码软件| 亚洲色欲久久久综合网东京热 | 久久精品青青草原伊人| 一本综合久久国产二区| 久久久亚洲裙底偷窥综合| 欧美午夜精品久久久久久浪潮| 国产高清美女一级a毛片久久w| 亚洲一本综合久久| 久久精品国产欧美日韩99热| 久久久久国产精品人妻| 99久久99久久久精品齐齐| 香蕉99久久国产综合精品宅男自 | 国产午夜福利精品久久2021| 久久精品国产99国产精偷 | 久久久精品国产免大香伊| 欧美黑人激情性久久| 99久久中文字幕| 99久久国产精品免费一区二区 | 久久精品国产一区二区| 久久精品国产99国产精品澳门| 久久久久人妻一区二区三区| 精品久久久久一区二区三区 | 国产无套内射久久久国产|