• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 195,  comments - 30,  trackbacks - 0

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

             

             

            V A S E S

             

             

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers.

            ASSUMPTIONS

            1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F. F ≤ V ≤ 100 where V is the number of vases. -50 ≤ Aij ≤ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Input

            The first line contains two numbers: F and V.

            The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

            Notice: The input contains several test cases.

            Output

            The output line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            這題可以用搜索過,但是還可以用dp
            用result[i][j]表示前i行,以j結尾的排法的最大值,
            rsult[1][j]直接初始化為num[i][j];其余初始化為負無窮
            dp的過程就是
                for(i=2;i<-r;i++)//行逐漸增加
                      for(j=i;j<=c;j++)//列必須大于等于行號,否則無法保證從左上方到右下方
                                for(k=1;k<j;k++)
                                           if(result[i][j]<result[i-1][k]+num[i][j])//無需擔心不是從左上方到右下方,因為若i<j,result[][]賦為了負無窮
                                                           result[i][j]=result[i-1][k]+num[i][j]
            更詳細的代碼可以到蘇強的博客http://download.csdn.net/user/china8848/獲得
            posted on 2009-07-14 10:05 luis 閱讀(251) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            <2010年12月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            常用鏈接

            留言簿(3)

            隨筆分類

            隨筆檔案

            文章分類

            文章檔案

            友情鏈接

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            久久久噜噜噜久久中文字幕色伊伊| 亚洲国产精品久久久久婷婷软件 | 无码人妻久久久一区二区三区| 久久久国产精品| 久久香蕉一级毛片| 色综合久久88色综合天天| 亚洲欧美伊人久久综合一区二区| 久久亚洲高清综合| 亚洲精品高清一二区久久| 久久午夜综合久久| 久久AV无码精品人妻糸列| 亚洲欧美久久久久9999| 久久精品视频一| 狠狠色综合网站久久久久久久高清 | 久久久精品人妻一区二区三区蜜桃| 久久久久亚洲?V成人无码| 四虎国产精品成人免费久久| 婷婷久久综合| 无码超乳爆乳中文字幕久久| 亚洲中文字幕无码一久久区| 996久久国产精品线观看| 99久久国产综合精品五月天喷水 | 亚洲AV伊人久久青青草原| 久久精品极品盛宴观看| 久久亚洲精精品中文字幕| 久久精品www| 中文成人无码精品久久久不卡 | 久久99精品久久久久久不卡| 性高湖久久久久久久久AAAAA| 久久精品国产乱子伦| 久久免费精品视频| 亚洲伊人久久成综合人影院 | 91久久婷婷国产综合精品青草| 热久久国产精品| 一本一道久久a久久精品综合| 久久精品欧美日韩精品| 久久久久亚洲AV成人网人人网站 | 亚洲精品国产综合久久一线| 精品久久久久久国产潘金莲 | 伊人久久亚洲综合影院| 9久久9久久精品|