青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

concentrate on c/c++ related technology

plan,refactor,daily-build, self-discipline,

  C++博客 :: 首頁 :: 聯(lián)系 :: 聚合  :: 管理
  37 Posts :: 1 Stories :: 12 Comments :: 0 Trackbacks

常用鏈接

留言簿(9)

我參與的團隊

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

only one vertex shader can be active at one time.
every vertex shader- driven program must run the following steps:
1) check for vertex shader support by checking the D3DCAPS8:VertexShaderVersion field.
D3DVS_VERSION(X,Y) shader x.y.
if(pCaps->VertexShaderVersion < D3DVS_VERSION(1,1))
{
return E_FAIL;
}
here to judge whether the vertex shader is suited for shader1.1.
the vertex shader version is in the D3DCAPS8 structure.
2) declaration of the vertex shader with D3DVSD_* macros, to map vertex buffers streams to input registers.
you must declare a vertex shader before using it,
SetStreamSource: bind a vertex buffer to a device data stream. D3DVSD_STREAM.
D3DVSD_REG:bind a single vertex register to a vertex element/property from vertex stream.
3) setting the vertex constant register with SetVertexShaderConstant.
you fill the vertex shader constant registers with SetVertexShaderConstant, and  get the vertex shader constant registers with GetVertexShaderConstant.
D3DVSD_CONSTANT: used in vertex shader declaration, and it can only be used once.
SetVertexShaderConstant: it can be used in every DrawPrimitive* calls.
4) compile previously written vertex shader with D3DXAssembleShader*.
different instructions include:
add  dest src1 src2  add src1 and src2 together.
dp3  dest src1 src2 dest.x = dest.y = dest.z = dest.w = (src1.x * src2.x ) + (src1.y * src2.y) + (src1.z* src2.z)
dp4  dest src1 src2 dest.w =  (src1.x * src2.x ) + (src1.y * src2.y) + (src1.z* src2.z) +(src1.w* src2.w) and dest.x dest.y, dest.z is not used.
dst dest src1 src2  dest.x = 1; dest.y = src1.y * src2.y;dest.z = src1.z;dest.w = src2.w; it is useful to calculate standard attentuation.
expp dest, src.w float tmp = (float)pow(2, w); WORD tmpd = *(DWORD*)&tmp & 0xffffff00; dest.z = *(float*)&tmpd;
lit dest, src

Calculates lighting coefficients from two dot products and a power.
---------------------------------------------
To calculate the lighting coefficients, set up the registers as shown:

src.x = N*L ; The dot product between normal and direction to light
src.y = N*H ; The dot product between normal and half vector
src.z = ignored ; This value is ignored
src.w = specular power ; The value must be between ?28.0 and 128.0
logp dest src.w 
 float tmp = (float)(log(v)/log(2)); 
 DWORD tmpd = *(DWORD*)&tmp & 0xffffff00; 
 dest.z = *(float*)&tmpd;
mad dest src1 src2 src3 dest = (src1 * src2) + src3
max dest src1 src2 dest = (src1 >= src2)?src1:src2
min dest src1 src2 dest = (src1 < src2)?src1:src2
mov dest, src move
mul dest, src1, src2  set dest to the component by component product of src1 and src2
nop nothing
rcp dest, src.w
if(src.w == 1.0f)
{
  dest.x = dest.y = dest.z = dest.w = 1.0f;
}
else if(src.w == 0)
{
  dest.x = dest.y = dest.z = dest.w = PLUS_INFINITY();
}
else
{
  dest.x = dest.y = dest.z = m_dest.w = 1.0f/src.w;
}
rsq dest, src

reciprocal square root of src
(much more useful than straight 'square root'):

float v = ABSF(src.w);
if(v == 1.0f)
{
  dest.x = dest.y = dest.z = dest.w = 1.0f;
}
else if(v == 0)
{
  dest.x = dest.y = dest.z = dest.w = PLUS_INFINITY();
}
else
{
  v = (float)(1.0f / sqrt(v));
  dest.x = dest.y = dest.z = dest.w = v;
}
sge dest, src1, src2 dest = (src1 >=src2) ? 1 : 0
slt dest, src1, src2 dest = (src1 <src2) ? 1 : 0

The Vertex Shader ALU is a multi-threaded vector processor that operates on quad-float data. It consists of two functional units. The SIMD Vector Unit is responsible for the mov, mul, add, mad, dp3, dp4, dst, min, max, slt and sge instructions. The Special Function Unit is responsible for the rcp, rsq, log, exp and lit instructions.

rsq is used in normalizing vectors to be used in lighting equations.
The exponential instruction expp can be used for fog effects, procedural noise generation.
A log function can be the inverse of a exponential function, means it undoes the operation of the exponential function.

The lit instruction deals by default with directional lights. It calculates the diffuse & specular factors with clamping based on N * L and N * H and the specular power. There is no attenuation involved, but you can use an attenuation level separately with the result of lit by using the dst instruction. This is useful for constructing attenuation factors for point and spot lights.

The min and max instructions allow for clamping and absolute value computation.
Using the Input Registers

The 16 input registers can be accessed by using their names v0 to v15. Typical values provided to the input vertex registers are:

  • Position(x,y,z,w)
  • Diffuse color (r,g,b,a) -> 0.0 to +1.0
  • Specular color (r,g,b,a) -> 0.0 to +1.0
  • Up to 8 Texture coordinates (each as s, t, r, q or u, v , w, q) but normally 4 or 6, dependent on hardware support
  • Fog (f,*,*,*) -> value used in fog equation
  • Point size (p,*,*,*)

The input registers are read-only. Each instruction may access only one vertex input register. unspecified components of the input registers default to 0.0 for the .x, .y, .z and 1.0 for the components w.

all data in an input register remains persistent throughout the vertex shader execution and even longer. that means they retain their data longer than the life-time of a vertex shader, so it is possible to re-use the data of the input registers in the next vertex shader.

Using the Constant Registers

Typical uses for the constant registers include:

  • Matrix data: quad-floats are typically one row of a 4x4 matrix
  • Light characteristics, (position, attenuation etc)
  • Current time
  • Vertex interpolation data
  • Procedural data

the constant registers are read-only from the perspective of the vertex shader, whereas the application can read and write into the constant registers.they can be reused just as input registers.
this allows an application to avoid making redundant SetVertexShaderConstant() calls.
Using the Address Register
you access the address registers with a0 to an(more than one address register should be available in vertex shader versions higher than 1.1)
Using the Temporary Registers
you can access 12 temporary registers using r0 to r11.
each temporary register has single write and triple read access. therefore an instruction could have the same temporary register as a source three times, vertex shaders can not read a value from a temporary register before writing to it. if you try to read a temporary register that was not filled with a value, the API will give you an error messge while creating the vertex shader(CreateVertexShader)
Using the Output Registers
there are up to 13 write-only output registers that can be accessed using the following register names. they are defined as the inputs to the rasterizer and the name of each registers is preceded by a lower case 'o'. the output registers are named to suggest their use by pixel shaders.
every vertex shader must write at least to one component of oPos, or you will get an error message by the assembler.
swizzling and masking
if you use the input, constant and temporary registers as source registers, you can swizzle the .x, .y, .z and .w values independently of each other.
if you use the output and temporary registers as destination registers you can use the .x, .y, .z and .w values as write-masks.
component modifier description
R.[x].[y].[z].[w]     Destination mask
R.xwzy                  source swizzle
- R                        source negation 
Guidelines for writing the vertex shaders
the most important restrictions you should remember when writing vertex shaders are the following:
they must write to at least one component of the output register oPos.
there is a 128 instruction limit
every instruction may souce no more than one constant register,e.g, add r0, c4,c3 will fail.
every instruction may souce no more than one input register, e.g. add r0,v1,v2 will fail.
there are no c-like conditional statements, but you can mimic an instruction of the form r0 = (r1 >= r2) ? r3 : r4 with the sge instruction.
all iterated values transferred out of the vertex shader are clamped to [0..1]
several ways to optimize vertex shaders:
when setting vertex shader constant data, try to set all data in one SetVertexShaderConstant call.
pause and think about using a mov instruction, you may be able to avoid it.
choose instructions that perform multiple operations over instructions that perform single operations.
collapse(remove complex instructions like m4x4 or m3x3 instructions)vertex shaders before thinking about optimizations.
a rule of thumb for load-balancing between the cpu/gpu: many calculations in shaders can be pulled outside and reformulated per-object instead of per-vertex and put into constant    registers. if you are doing some calculation which is per object rather than per vertex, then do it on the cpu and upload it on the vertex shader as a constant, rather than doing it on the GPU.
one of the most interesting methods to optimize methods to optimize your applications bandwidth usage, is the usage of the compressed vertex data.
Compiling a Vertex Shader
Direct3D uses byte-codes, whereas OpenGL implementations parses a string. therefore the Direct3D developer needs to assemble the vertex shader source with an assembler.this might help you find bugs earlier in your development cycle and it also reduces load-time.
three different ways to compile a vertex shader:
write the vertex shader source into a separate ASCII file for example test.vsh and compile it with vertex shader assembler into a binary file, for example test.vso. this file will be opened and read at game start up. this way, not every person will be able to read and modify your vertex shader source.
write the vertex shader source into a separate ASCII file or as a char string into you *.cpp file and compile it "on the fly" while the application starts up with the D3DXAssembleShader*() functions.
write the vertex shader source in an effects file and open this effect file when the application starts up.the vertex shader can be compiled by reading the effect files with D3DXCreateEffectFromFile. it is also possible to pre-compile an effects file. this way, most of the handling of vertex shaders is simplified and handled by the effect file functions.
 
5) Creating a vertex shader handle with CreateVertexShader.
the CreateVertexShader function is used to create and validate a vertex shader.
6) setting a vertex shader with SetVertexShader for a specific object.
you set a vertex shader for a specific object by using SetVertexShader before the DrawPrimitive() call of this object.
vertex shaders are executed with SetVertexShader as many times as there are vertices,.
7) delete a vertex shader with DeleteVertexShader().
when the game shuts down or when the device is changed, the resources taken by the vertex shader must be released. this must be done by calling DeleteVertexShader with the vertex shader handle.

Point light source.
a point light source has color and position within a scene, but no single direction. all light rays originate from one point and illuminate equally in all directions. the intensity of the rays will remain constant regardless of their distance from the point source unless a falloff value is explicitly stated. a point light is useful to simulate light bulb.

to get a wider range of effects a decent attenuation equation is used:
funcAttenuation = 1/A0 + A1 * dL + A2 * dL * dL

posted on 2008-12-09 11:18 jolley 閱讀(550) 評論(0)  編輯 收藏 引用

只有注冊用戶登錄后才能發(fā)表評論。
網(wǎng)站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美刺激性大交免费视频| 亚洲国产精品嫩草影院| 一区二区三区日韩精品| 欧美精品在线极品| 欧美成人激情在线| 亚洲精品欧美在线| 日韩图片一区| 国产精品视频久久一区| 欧美夜福利tv在线| 久久国产精品第一页| 在线观看成人小视频| 亚洲高清久久网| 欧美精品一区二区三区很污很色的 | 欧美激情一区二区三区全黄| 欧美激情成人在线视频| 国产精品99久久久久久白浆小说| 亚洲一区二区三区乱码aⅴ| 国产私拍一区| 欧美激情自拍| 国产精品久久久久久久久搜平片| 久久成人免费| 欧美国产三区| 欧美一区二区三区在线播放| 欧美主播一区二区三区美女 久久精品人 | 国产精品二区二区三区| 久久一区二区三区四区五区| 欧美国产日韩免费| 欧美亚洲在线播放| 免费观看成人www动漫视频| 亚洲视频在线一区| 久久人人爽人人| 亚洲一区不卡| 免播放器亚洲| 久久精品在线视频| 欧美日韩亚洲一区| 欧美成人午夜| 国产伦精品一区二区三区| 欧美高清你懂得| 国产日韩一区在线| 亚洲精品一区中文| 亚洲高清不卡在线| 香蕉久久精品日日躁夜夜躁| 夜夜夜精品看看| 久久久天天操| 久久久91精品国产一区二区三区| 欧美日韩国产一级| 欧美激情视频免费观看| 国产亚洲欧美日韩一区二区| 一区二区欧美精品| 99视频+国产日韩欧美| 久久久久久有精品国产| 性一交一乱一区二区洋洋av| 欧美另类亚洲| 亚洲国产精品免费| 亚洲国产日韩欧美综合久久| 欧美影视一区| 久久久精品国产免大香伊 | 欧美激情一区在线| 美玉足脚交一区二区三区图片| 国产精品最新自拍| 这里只有精品丝袜| 亚洲视频一区二区| 欧美日韩在线大尺度| 亚洲第一在线| 亚洲日韩成人| 欧美激情日韩| 亚洲精品在线免费| 一区二区免费在线播放| 欧美精品久久一区二区| 亚洲国产小视频| 夜夜嗨av色一区二区不卡| 欧美成人视屏| 亚洲精品欧美一区二区三区| 99精品久久| 国产精品成人一区二区| 亚洲手机成人高清视频| 午夜视频一区| 国产一区二区激情| 久久久久久夜| 亚洲片区在线| 亚洲一区久久久| 国产精品网站在线观看| 欧美一区二区大片| 久久婷婷国产麻豆91天堂| 亚洲国产高潮在线观看| 欧美第一黄色网| 中文亚洲欧美| 久久久夜精品| 亚洲精品三级| 国产精品免费观看在线| 久久国产欧美精品| 亚洲第一偷拍| 欧美一级片一区| 亚洲春色另类小说| 欧美日韩三级| 久久精品视频免费观看| 欧美激情1区2区3区| 在线视频免费在线观看一区二区| 国产精品看片你懂得| 久久久久欧美精品| 日韩性生活视频| 久久福利资源站| 亚洲久久一区| 国产欧美精品一区aⅴ影院| 另类av导航| 亚洲一区影音先锋| 亚洲国产成人91精品| 久久高清国产| 夜夜嗨av一区二区三区网站四季av | 亚洲人成人99网站| 欧美在线观看视频一区二区| 亚洲欧洲一二三| 国产日韩欧美亚洲一区| 欧美精品在欧美一区二区少妇| 性久久久久久久久久久久| 最新69国产成人精品视频免费| 久久精品免费电影| 中文日韩在线视频| 1769国内精品视频在线播放| 国产精品日韩欧美一区| 欧美大色视频| 久久这里只有| 欧美在线综合视频| 中日韩美女免费视频网站在线观看| 欧美电影在线| 久久久久久久一区| 亚洲欧美日韩精品| 在线视频亚洲| 一区二区欧美日韩视频| 亚洲黑丝一区二区| 激情综合网址| 国产在线精品一区二区中文| 国产精品国产三级国产| 欧美日韩成人网| 欧美高清视频| 欧美韩日一区二区| 女女同性精品视频| 裸体一区二区三区| 另类亚洲自拍| 麻豆久久婷婷| 久久综合狠狠综合久久激情| 久久精品欧美日韩精品| 欧美一区二区三区四区在线| 先锋资源久久| 久久国产福利| 久久亚洲影院| 麻豆精品91| 欧美屁股在线| 欧美少妇一区| 国产精品日韩一区| 国产精品视频免费一区| 国产精品亚洲不卡a| 国产欧美欧洲在线观看| 国产在线欧美| 在线观看视频欧美| 亚洲精品国产精品久久清纯直播| 最新国产乱人伦偷精品免费网站 | 韩国女主播一区二区三区| 好看的日韩av电影| 在线欧美影院| 一本久道久久综合狠狠爱| 亚洲女ⅴideoshd黑人| 欧美一级午夜免费电影| 久久天天躁狠狠躁夜夜av| 欧美成人免费va影院高清| 亚洲黄色成人网| 一区二区三区国产在线| 新片速递亚洲合集欧美合集| 久久免费视频在线| 欧美—级a级欧美特级ar全黄| 欧美三级不卡| 国产一区二区三区高清播放| 亚洲黄色一区二区三区| 一区二区三区精密机械公司 | 亚洲国内在线| 亚洲一二三四久久| 欧美综合第一页| 亚洲福利视频二区| 亚洲一线二线三线久久久| 久久免费99精品久久久久久| 欧美视频二区| 一区视频在线| 亚洲综合不卡| 欧美国产日韩免费| 亚洲一区二区三区视频播放| 久久午夜精品一区二区| 欧美性色视频在线| 狠狠爱综合网| 亚洲欧美国产日韩中文字幕| 每日更新成人在线视频| 在线视频日韩精品| 久久全国免费视频| 国产精品网站在线观看| 最近中文字幕日韩精品 | 91久久精品一区二区别| 欧美一区二区三区免费视| 亚洲黄色毛片| 久久裸体视频| 国产日韩欧美高清免费| 亚洲视频一二三|