http://en.wikipedia.org/wiki/Subgradient_methodClassical subgradient rules
Let
be a convex function with domain
. A classical subgradient method iterates
where
denotes a subgradient of
at
. If
is differentiable, then its only subgradient is the gradient vector
itself. It may happen that
is not a descent direction for
at
. We therefore maintain a list
that keeps track of the lowest objective function value found so far, i.e.

下圖來自: http://www.stanford.edu/class/ee364b/notes/subgradients_notes.pdf
例2:SVM代價函數是hinge loss,在(1,0)除導數不存在,取1和1之間的數值,具體怎么取?Mingming Gong said好像這個pdf和http://www.stanford.edu/class/ee364b/lectures/subgrad_method_slides.pdf,其中一個講了。Mingming Gong asked tianyi, which is better, subgradient or smooth apprpximation?結論是不一定,subgradient解的是原問題,smooth不是解的原問題。一個相當于對梯度的近似,一個是對函數的近似,很難說哪個好。


