锘??xml version="1.0" encoding="utf-8" standalone="yes"?> 鎴戜滑鍙互鐩存帴鏋勯狅細 1. PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup 錛堢粰浜鴻劯鍖栧鐨勯鏍艱漿縐伙級 2.CartoonGAN: Generative Adversarial Networks for Photo Cartoonization 錛堝皢鍥劇墖杞寲涓哄崱閫氶鏍肩殑GAN錛?/p> 3.StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation 錛堜漢鑴稿縐嶉鏍艱漿鎹級 4.Multi-Content GAN for Few-Shot Font Style Transfer 錛堝瓧浣撻鏍艱漿鎹級 5.DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks 錛堝浘鍒板浘杞崲錛?/p> 6. Conditional Image-to-Image translation 錛堝浘鍒板浘鐨勮漿鎹級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_Conditional_Image-to-Image_Translation_CVPR_2018_paper.pdf 1. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks 錛堝幓妯$硦錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Kupyn_DeblurGAN_Blind_Motion_CVPR_2018_paper.pdf 2.Attentive Generative Adversarial Network for Raindrop Removal from A Single Image 錛堝幓闄ゅ浘鐗囦腑鐨勯洦婊達級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Qian_Attentive_Generative_Adversarial_CVPR_2018_paper.pdf 3. Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with GANs 錛堢敤浜庣収鐗囧寮猴級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Deep_Photo_Enhancer_CVPR_2018_paper.pdf 4. SeGAN: Segmenting and Generating the Invisible 錛堝幓閬尅錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Ehsani_SeGAN_Segmenting_and_CVPR_2018_paper.pdf 5.Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal 錛堝幓闃村獎錛?/p> 6.Image Blind Denoising With Generative Adversarial Network Based Noise Modeling 錛堝幓鍣0錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Image_Blind_Denoising_CVPR_2018_paper.pdf 7. Single Image Dehazing via Conditional Generative Adversarial Network 錛堝幓鍣0錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Single_Image_Dehazing_CVPR_2018_paper.pdf 1. ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing 錛堢┖闂磋漿鎹㈢敓鎴愬浘鐗囷級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_ST-GAN_Spatial_Transformer_CVPR_2018_paper.pdf 2. SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis 錛堢敱杈規鐢熸垚鍥劇墖錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_SketchyGAN_Towards_Diverse_CVPR_2018_paper.pdf 3. TextureGAN: Controlling Deep Image Synthesis with Texture Patches 錛堢敱綰硅礬鐢熸垚鍥劇墖錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Xian_TextureGAN_Controlling_Deep_CVPR_2018_paper.pdf 4. Eye In-Painting with Exemplar Generative Adversarial Networks 錛堢粰浜虹墿鐢葷溂鐫涳級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Dolhansky_Eye_In-Painting_With_CVPR_2018_paper.pdf 5.Photographic Text-to-Image Synthesis with a Hierarchically-nested Adversarial Network 錛堟枃鏈敓鎴愬浘鐗囷級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Photographic_Text-to-Image_Synthesis_CVPR_2018_paper.pdf 6. Logo Synthesis and Manipulation with Clustered Generative Adversarial Networks 錛堢敓鎴恖ogo錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Sage_Logo_Synthesis_and_CVPR_2018_paper.pdf 7. Cross-View Image Synthesis Using Conditional GANs 錛堣鍖轟刊瑙嗗浘鍜岀洿瑙嗚漿鎹級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Regmi_Cross-View_Image_Synthesis_CVPR_2018_paper.pdf 8. AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks 錛堟枃鏈敓鎴愬浘鐗囷級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_AttnGAN_Fine-Grained_Text_CVPR_2018_paper.pdf 9. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs 錛堝浘鍍忛珮鍒嗚鯨鐜囷級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_High-Resolution_Image_Synthesis_CVPR_2018_paper.pdf 1. Finding Tiny Faces in the Wild with Generative Adversarial Network 錛堝浣庡垎杈ㄧ巼鐨勪漢鑴告嫻嬶級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Bai_Finding_Tiny_Faces_CVPR_2018_paper.pdf 2. Learning Face Age Progression: A Pyramid Architecture of GANs 錛堥嫻嬪勾榫勶級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Learning_Face_Age_CVPR_2018_paper.pdf 3. Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs 錛堝浣庡垎杈ㄧ巼浜鴻劯瓚呭垎杈ㄧ巼錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Bulat_Super-FAN_Integrated_Facial_CVPR_2018_paper.pdf 4. Towards Open-Set Identity Preserving Face Synthesis 錛堜漢鑴稿悎鎴愶級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Bao_Towards_Open-Set_Identity_CVPR_2018_paper.pdf 5. Weakly Supervised Facial Action Unit Recognition through Adversarial Training 錛堜漢鑴歌〃鎯呰瘑鍒級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_Weakly_Supervised_Facial_CVPR_2018_paper.pdf 6.FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis 錛堢敓鎴愬瑙掑害浜鴻劯錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_FaceID-GAN_Learning_a_CVPR_2018_paper.pdf 7. UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition 錛堜漢鑴哥敓鎴愶級 8.Face Aging with Identity-Preserved Conditional Generative Adversarial Networks 錛堜漢鑴歌佸寲錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Face_Aging_With_CVPR_2018_paper.pdf 1. Deformable GANs for Pose-based Human Image Generation 錛堜漢鐗╁Э鎬佽縼縐伙級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Siarohin_Deformable_GANs_for_CVPR_2018_paper.pdf 2. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks (鐢℅AN鐢熸垚浜鴻涓鴻建榪硅拷韙? http://openaccess.thecvf.com/content_cvpr_2018/papers/Gupta_Social_GAN_Socially_CVPR_2018_paper.pdf 3. GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB 錛堢敤GAN鐢熸垚鐨勬墜鍔垮浘鐗囧仛鎵嬪娍榪借釜鐨勬暟鎹泦錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Mueller_GANerated_Hands_for_CVPR_2018_paper.pdf 4. Multistage Adversarial Losses for Pose-Based Human Image Synthesis 錛堜漢浣撳Э鎬佸悎鎴愶級 5. Disentangled Person Image Generation 錛堜漢浣撳悎鎴愶級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Ma_Disentangled_Person_Image_CVPR_2018_paper.pdf 錛堣繖涓病鏉ュ緱鍙婃壘浜嗭紝鍙兘杞鍜瘇 鍞夛級 1. Generate to Adapt: Aligning Domains Using Generative Adversarial Networks 2. Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation 3. Adversarial Feature Augmentation for Unsupervised Domain Adaptation 4. Domain Generalization With Adversarial Feature Learning 5. Image to Image Translation for Domain Adaptation 6. Duplex Generative Adversarial Network for Unsupervised Domain Adaptation 7. Conditional Generative Adversarial Network for Structured Domain Adaptation 1.Generative Adversarial Learning Towards Fast Weakly Supervised Detection 錛堝急鐩戠潱媯嫻嬶級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_Generative_Adversarial_Learning_CVPR_2018_paper.pdf 2. SINT++: Robust Visual Tracking via Adversarial Positive Instance Generation 錛堝鎶楀涔犵敓鎴愯建榪規牱鏈級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_SINT_Robust_Visual_CVPR_2018_paper.pdf 3. VITAL: VIsual Tracking via Adversarial Learning http://openaccess.thecvf.com/content_cvpr_2018/papers/Song_VITAL_VIsual_Tracking_CVPR_2018_paper.pdf 1. SGAN: An Alternative Training of Generative Adversarial Network 錛堟浛浠h緇僄AN錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Chavdarova_SGAN_An_Alternative_CVPR_2018_paper.pdf 2. GAGAN: Geometry-Aware Generative Adversarial Networks 錛堜竴縐嶅叧娉ㄥ嚑浣曞褰㈢殑GAN錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Kossaifi_GAGAN_Geometry-Aware_Generative_CVPR_2018_paper.pdf 3.Global versus Localized Generative Adversarial Nets (灞閮ㄤ紭鍖朑AN) http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Global_Versus_Localized_CVPR_2018_paper.pdf 4. Generative Adversarial Image Synthesis with Decision Tree Latent Controller 錛堝喅絳栨爲錛?/p> 5. Unsupervised Deep Generative Adversarial Hashing Network 錛堝搱甯孏AN錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Dizaji_Unsupervised_Deep_Generative_CVPR_2018_paper.pdf 6. Multi-Agent Diverse Generative Adversarial Networks 錛堝涓敓鎴愬櫒GAN錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Ghosh_Multi-Agent_Diverse_Generative_CVPR_2018_paper.pdf 7. Duplex Generative Adversarial Network for Unsupervised Domain Adaptation 錛堝弻閴村埆鍣℅AN錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Duplex_Generative_Adversarial_CVPR_2018_paper.pdf 1. Translating and Segmenting Multimodal Medical Volumes With Cycle- and Shape-Consistency Generative Adversarial Network 錛堝浘鍍忓垎鍓詫級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Translating_and_Segmenting_CVPR_2018_paper.pdf 1. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification 錛堢敤GAN鐢熸垚鐨勪漢浣撴嫻嬬殑鍥劇墖錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Wei_Person_Transfer_GAN_CVPR_2018_paper.pdf 2. Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification http://openaccess.thecvf.com/content_cvpr_2018/papers/Deng_Image-Image_Domain_Adaptation_CVPR_2018_paper.pdf 1. Visual Feature Attribution using Wasserstein GANs http://openaccess.thecvf.com/content_cvpr_2018/papers/Baumgartner_Visual_Feature_Attribution_CVPR_2018_paper.pdf 1. Generate To Adapt: Aligning Domains using Generative Adversarial Networks 錛堣瑙夊煙鑷傚簲錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Sankaranarayanan_Generate_to_Adapt_CVPR_2018_paper.pdf 1. HashGAN: Deep Learning to Hash with Pair Conditional Wasserstein GAN http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_HashGAN_Deep_Learning_CVPR_2018_paper.pdf 1.Partial Transfer Learning With Selective Adversarial Networks http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Partial_Transfer_Learning_CVPR_2018_paper.pdf 1. MoCoGAN: Decomposing Motion and Content for Video Generation 錛堢敤GAN鐢熸垚瑙嗛錛?/p> http://openaccess.thecvf.com/content_cvpr_2018/papers/Tulyakov_MoCoGAN_Decomposing_Motion_CVPR_2018_paper.pdf 2. Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks 錛堢敓鎴愬歡鏃惰棰戯級 http://openaccess.thecvf.com/content_cvpr_2018/papers/Xiong_Learning_to_Generate_CVPR_2018_paper.pdf 鍙互鐪嬪嚭GAN鐩稿叧鐨勮鏂囪繕涓嶅皯鍛錛屽悇涓柟闈㈢殑閮芥湁錛屽彲鏄垜涓漢瑙夊緱錛屽彲鑳芥病鏈夐偅縐嶇壒鍒帀瀹崇殑鍚hh
]]>
]]>
]]>
Reference:
https://zhuanlan.zhihu.com/p/36173202
]]>
In Matlab:
]]>
]]>鍥劇墖澶勭悊
鍥劇墖鐢熸垚
浜鴻劯鐩稿叧
浜轟綋鐩稿叧
domain adaptation
鐩爣璺熻釜媯嫻?/span>
GAN妯″瀷浼樺寲
鍥懼儚鍒嗗壊
琛屼漢閲嶈瘑鍒?/span>
瑙嗚鐗瑰緛鎻愬彇
鍩熻嚜閫傚簲瀛︿範
鍥懼儚媯绱?/span>
榪佺Щ瀛︿範
瑙嗛鐢熸垚
灝忕粨錛?/strong>
]]>