raven的ai處理:
先據評估項(函數)進行評估選出當前最優一項,據此項產生對應的新行為處理對象(先清除之前的所有行為),調用它的process()來處理.
具體如下:
一。行為評估項:
每個bot有一個brain(即Goal_Think類),在brain中有一個評估列表m_Evaluators;
raven中主要是有4種需要評估的行為:
1.拿藥包
2.探索
3.攻擊
4.拿武器
具體如下:
double HealthBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double ShotgunBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double RocketLauncherBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double RailgunBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double ExploreBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
double AttackBias = RandInRange(LowRangeOfBias, HighRangeOfBias);
//create the evaluator objects
m_Evaluators.push_back(new GetHealthGoal_Evaluator(HealthBias));
m_Evaluators.push_back(new ExploreGoal_Evaluator(ExploreBias));
m_Evaluators.push_back(new AttackTargetGoal_Evaluator(AttackBias));
m_Evaluators.push_back(new GetWeaponGoal_Evaluator(ShotgunBias,
type_shotgun));
m_Evaluators.push_back(new GetWeaponGoal_Evaluator(RailgunBias,
type_rail_gun));
m_Evaluators.push_back(new GetWeaponGoal_Evaluator(RocketLauncherBias,
type_rocket_launcher));
上述評估項目主要派生了一個 CalculateDesirability(), 以便bot在更新時遍歷該評估表,
調用它們的CalculateDesirability()選出最優先的行為項,并調用它的SetGoal(m_pOwnerBot)方法;
對應被選中的評估項的SetGoal函數內容:
void AttackTargetGoal_Evaluator::SetGoal(Raven_Bot* pBot)
{
pBot->GetBrain()->AddGoal_AttackTarget();
}
void ExploreGoal_Evaluator::SetGoal(Raven_Bot* pBot)
{
pBot->GetBrain()->AddGoal_Explore();
}
void GetHealthGoal_Evaluator::SetGoal(Raven_Bot* pBot)
{
pBot->GetBrain()->AddGoal_GetItem(type_health);
}
void GetWeaponGoal_Evaluator::SetGoal(Raven_Bot* pBot)
{
pBot->GetBrain()->AddGoal_GetItem(m_iWeaponType);
}
二。行為處理類:
在上述SetGoal對應具體函數中所調用的brain方法具體產生的行為如下:
void Goal_Think::AddGoal_Explore()
{
if (notPresent(goal_explore))
{
RemoveAllSubgoals();
AddSubgoal( new Goal_Explore(m_pOwner));
}
}
void Goal_Think::AddGoal_GetItem(unsigned int ItemType)
{
if (notPresent(ItemTypeToGoalType(ItemType)))
{
RemoveAllSubgoals();
AddSubgoal( new Goal_GetItem(m_pOwner, ItemType));
}
}
void Goal_Think::AddGoal_AttackTarget()
{
if (notPresent(goal_attack_target))
{
RemoveAllSubgoals();
AddSubgoal( new Goal_AttackTarget(m_pOwner));
}
}
當bot更新時會調用brain的process,從而調用到對應的subgoal中的Process()函數
注意:
每個goal在處理時還可以產生它自己的子goal。因為有時候在處理一個goal時需要等完成
另一個子goal后才能處理。 即狀態管理使用了樹結構.
posted on 2013-04-07 11:08
flipcode 閱讀(261)
評論(0) 編輯 收藏 引用