本節是第二節
lighttpd1.4.18代碼分析(二)--fdevents結構體解析的延續,在閱讀本節內容之前,請先閱讀上一節內容.
上一節已經對lighttpd中的fdevent結構體進行了分析,前面提過,fdevent結構體是網絡IO事件處理器的"虛擬基類",提供了網絡IO事件處理器的公共成員,私有成員以及對外接口,這一節將對這個事件處理器的實現和使用進行解析.與這些相關的文件有這些:fdevent.h提供了fdevent結構體的定義, 在這個頭文件中聲明的函數可以看作是fdevent這個結構體對外暴露的接口, 也就是OO中所謂的類public函數, fdevent.c則是這些函數的實現,而以fdevent_為開頭的幾個C文件則是不同的網絡IO模型的實現,比如fdevent_select.c文件是select模型的實現.我不打算對各種類型的網絡IO模型做詳細的介紹,事實上,所有這里用到的網絡IO模型,我只用過select和epoll,所以我打算以select模型為例展開這里的討論,因為select是相對而言用的最多也是大多數人在學習多路復用IO的時候學到的第一個模型,即使在epoll橫行的今天,select模型仍然有著它的一席之地.
1)初始化
如何配置使用的是哪種網絡IO模型?在配置文件中有一項server.event-handler就是配置需要使用的網絡IO的,比如server.event-handler="select"就是選擇select, 其它的配置字符串參見前一節最開始提到的那些類型.服務器在初始化的時候讀取該配置項, 將網絡IO事件類型存放在結構體server的成員event_handler中.
接著, 在server.c的main函數中服務器調用fdevent_init(size_t maxfds, fdevent_handler_t type)初始化一個fdevents指針, 返回的結果存放在server結構體中的ev成員中.
在這個函數中, 根據type參數進行初始化, 生成具體各種不同類型的fdevents指針, 這些初始化的函數都是以init為后綴的, 而所有具體實現的文件名為
fdevent_***.c(如fdevent_select.c是select模型的實現), 對外暴露的僅僅是那個以init為后綴的函數, 而上面那些函數接口的實現全都是這些文件中
靜態函數, 很好的限制了它們的使用范圍, 做到了信息隱藏, 這些函數可以看作是類中的私有函數, 以select模型為例:
對外暴露的初始化函數是fdevent_select_init, 它在fdevent.h中聲明, 也就是說這個函數是對外暴露的, 而這個函數在fdevent_select.c被定義:
int fdevent_select_init(fdevents *ev) {
ev->type = FDEVENT_HANDLER_SELECT;
#define SET(x) \
ev->x = fdevent_select_##x;
SET(reset);
SET(poll);
SET(event_del);
SET(event_add);
SET(event_next_fdndx);
SET(event_get_fd);
SET(event_get_revent);
return 0;
}
查看fdevent_secelt.c文件,可以看到,名為fdevent_select_***的函數都是這個文件的靜態函數, 再從面向對象的觀點出發,這些函數屬于采用select模型實現的fdevent的"私有函數", 如此做法, 很好的滿足了所謂的"信息隱藏".
2) 使用
在服務器創建一個socket fd并且進行監聽后, 要將該fd注冊到fdevent中, 這樣才能使用使用這個事件處理機制.
在server.c文件的main函數中, 調用network_register_fdevents函數將所有監聽的fd注冊到事件處理器中:
int network_register_fdevents(server *srv) {
size_t i;
if (-1 == fdevent_reset(srv->ev)) {
return -1;
}
/* register fdevents after reset */
for (i = 0; i < srv->srv_sockets.used; i++) {
server_socket *srv_socket = srv->srv_sockets.ptr[i];
fdevent_register(srv->ev, srv_socket->fd, network_server_handle_fdevent, srv_socket);
fdevent_event_add(srv->ev, &(srv_socket->fde_ndx), srv_socket->fd, FDEVENT_IN);
}
return 0;
}
關鍵是在循環體中的兩個函數, fdevent_register的第三個參數是一個回調函數, 就是fdevents的成員fdarray中每個fdnode的成員handler:
int fdevent_register(fdevents *ev, int fd, fdevent_handler handler, void *ctx) {
fdnode *fdn;
// 分配一個fdnode指針
fdn = fdnode_init();
// 保存回調函數
fdn->handler = handler;
// 保存fd
fdn->fd = fd;
// 保存context 對server是server為socket指針, 對client是connection指針
fdn->ctx = ctx;
// 以fd為索引在fdarray中保存這個fdnode
ev->fdarray[fd] = fdn;
return 0;
}
這里有一個小技巧, 函數中的倒數第二行, 以fd為索引保存fdnode, 因為這里的fdarray是一個數組, 因此這個方法可以以O(1)的速度找到與該fd相關的fdnode指針.但是, 因為0,1,2這三個fd已經提前預留給了標準輸入輸出錯誤這三個IO, 所以采用這樣的算法將會至少浪費三個fdnode指針.
現在, 可以對fdnode結構體中兩個成員進一步進行解析了:
fdevent_handler handler;
void *ctx;
其中, 如果該fd是服務器監聽客戶端連接的fd, 那么handler =
network_server_handle_fdevent(在network.c文件中), ctx保存的就是server指針;
如果該fd是accapt客戶端連接之后的fd, 那么handler = connection_handle_fdevent(在connections.c文件中), ctx保存的就是connection指針.
回過頭來看,在將服務器監聽fd注冊到網絡IO事件處理器中之后, 這個處理器就要開始循環處理了, 在server.c中的main.c函數中是這個輪詢的主過程:
// 輪詢FD
if ((n = fdevent_poll(srv->ev, 1000)) > 0) {
/* n is the number of events */
int revents;
int fd_ndx;
fd_ndx = -1;
do {
fdevent_handler handler;
void *context;
handler_t r;
// 獲得處理這些事件的函數指針 fd等
// 獲得下一個fd在fdarray中的索引
fd_ndx = fdevent_event_next_fdndx (srv->ev, fd_ndx);
// 獲得這個fd要處理的事件類型
revents = fdevent_event_get_revent (srv->ev, fd_ndx);
// 獲取fd
fd = fdevent_event_get_fd (srv->ev, fd_ndx);
// 獲取回調函數
handler = fdevent_get_handler(srv->ev, fd);
// 獲取處理相關的context(對server是server_socket指針, 對client是connection指針)
context = fdevent_get_context(srv->ev, fd);
/* connection_handle_fdevent needs a joblist_append */
// 進行處理
switch (r = (*handler)(srv, context, revents)) {
case HANDLER_FINISHED:
case HANDLER_GO_ON:
case HANDLER_WAIT_FOR_EVENT:
case HANDLER_WAIT_FOR_FD:
break;
case HANDLER_ERROR:
/* should never happen */
SEGFAULT();
break;
default:
log_error_write(srv, __FILE__, __LINE__, "d", r);
break;
}
} while (--n > 0);
簡單的說, 這個過程就是:首先調用poll函數指針獲取相關網絡IO被觸發的事件數, 保存在整型變量n中, 然后根據這個n值進行以下循環, 每次處理完n值減一, 為0之后退出, 這個循環的大致過程是: 首先獲取下一個被觸發的網絡事件在fdnode數組中的索引, 接著根據該索引獲取相關的事件類型, fd, 回調函數, contex, ,接著根據這些調用回調函數(也就是我們上面提到的函數 network_server_handle_fdevent和connection_handle_fdevent),請注意, 在本節的最開始部分曾經提到過fdevent.h中聲明的函數都是對外暴露的fdevent結構體"public函數", 在上面這個輪詢的過程中使用的正是這些"public函數", 在這些"public函數"中再根據曾經初始化的函數指針進行調用, 實現了OO中所謂的"多態".
以上就是通過fdevent結構體實現的網絡IO處理器模型, 在這里體現如何使用C實現OO面向對象編程的種種常用技巧,不放在本節最后做一個總結:
1) fdevent結構體是一個虛擬基類, 其中的函數指針就是虛擬基類中的純虛函數, 由具體實現去初始化之.fdevent結構體中的對象為所有派生類的公共成員, 而用各個預編譯宏包圍的成員則是各個派生類的私有成員.
2) 在fdevent.h中聲明的函數可以理解為虛擬基類對外暴露的接口, 也就是public函數.
3) 各個具體的實現分別是各個實現C文件中的靜態函數, 也就是派生類的private函數.
如果閱讀到這里仍然對lighttpd中網絡IO處理器模型有疑問, 可以具體參看前面提到的fdevent.h/c文件, 以及以fdevent_為前綴的c文件.