epoll有兩種模式,Edge Triggered(簡稱ET) 和 Level Triggered(簡稱LT).在采用這兩種模式時要注意的是,如果采用ET模式,那么僅當狀態發生變化時才會通知,而采用LT模式類似于原來的select/poll操作,只要還有沒有處理的事件就會一直通知.
以代碼來說明問題:
首先給出server的代碼,需要說明的是每次accept的連接,加入可讀集的時候采用的都是ET模式,而且接收緩沖區是5字節的,也就是每次只接收5字節的數據:
#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
using namespace std;
#define MAXLINE 5
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5000
#define INFTIM 1000
void setnonblocking(int sock)
{
int opts;
opts=fcntl(sock,F_GETFL);
if(opts<0)
{
perror("fcntl(sock,GETFL)");
exit(1);
}
opts = opts|O_NONBLOCK;
if(fcntl(sock,F_SETFL,opts)<0)
{
perror("fcntl(sock,SETFL,opts)");
exit(1);
}
}
int main()
{
int i, maxi, listenfd, connfd, sockfd,epfd,nfds;
ssize_t n;
char line[MAXLINE];
socklen_t clilen;
//聲明epoll_event結構體的變量,ev用于注冊事件,數組用于回傳要處理的事件
struct epoll_event ev,events[20];
//生成用于處理accept的epoll專用的文件描述符
epfd=epoll_create(256);
struct sockaddr_in clientaddr;
struct sockaddr_in serveraddr;
listenfd = socket(AF_INET, SOCK_STREAM, 0);
//把socket設置為非阻塞方式
//setnonblocking(listenfd);
//設置與要處理的事件相關的文件描述符
ev.data.fd=listenfd;
//設置要處理的事件類型
ev.events=EPOLLIN|EPOLLET;
//ev.events=EPOLLIN;
//注冊epoll事件
epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
bzero(&serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
char *local_addr="127.0.0.1";
inet_aton(local_addr,&(serveraddr.sin_addr));//htons(SERV_PORT);
serveraddr.sin_port=htons(SERV_PORT);
bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));
listen(listenfd, LISTENQ);
maxi = 0;
for ( ; ; ) {
//等待epoll事件的發生
nfds=epoll_wait(epfd,events,20,500);
//處理所發生的所有事件
for(i=0;i<nfds;++i)
{
if(events[i].data.fd==listenfd)
{
connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen);
if(connfd<0){
perror("connfd<0");
exit(1);
}
//setnonblocking(connfd);
char *str = inet_ntoa(clientaddr.sin_addr);
cout << "accapt a connection from " << str << endl;
//設置用于讀操作的文件描述符
ev.data.fd=connfd;
//設置用于注測的讀操作事件
ev.events=EPOLLIN|EPOLLET;
//ev.events=EPOLLIN;
//注冊ev
epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
}
else if(events[i].events&EPOLLIN)
{
cout << "EPOLLIN" << endl;
if ( (sockfd = events[i].data.fd) < 0)
continue;
if ( (n = read(sockfd, line, MAXLINE)) < 0) {
if (errno == ECONNRESET) {
close(sockfd);
events[i].data.fd = -1;
} else
std::cout<<"readline error"<<std::endl;
} else if (n == 0) {
close(sockfd);
events[i].data.fd = -1;
}
line[n] = '\0';
cout << "read " << line << endl;
//設置用于寫操作的文件描述符
ev.data.fd=sockfd;
//設置用于注測的寫操作事件
ev.events=EPOLLOUT|EPOLLET;
//修改sockfd上要處理的事件為EPOLLOUT
//epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
}
else if(events[i].events&EPOLLOUT)
{
sockfd = events[i].data.fd;
write(sockfd, line, n);
//設置用于讀操作的文件描述符
ev.data.fd=sockfd;
//設置用于注測的讀操作事件
ev.events=EPOLLIN|EPOLLET;
//修改sockfd上要處理的事件為EPOLIN
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
}
}
}
return 0;
}
下面給出測試所用的Perl寫的client端,在client中發送10字節的數據,同時讓client在發送完數據之后進入死循環, 也就是在發送完之后連接的狀態不發生改變--既不再發送數據, 也不關閉連接,這樣才能觀察出server的狀態:
#!/usr/bin/perl
use IO::Socket;
my $host = "127.0.0.1";
my $port = 5000;
my $socket = IO::Socket::INET->new("$host:$port") or die "create socket error $@";
my $msg_out = "1234567890";
print $socket $msg_out;
print "now send over, go to sleep
\n";
while (1)
{
sleep(1);
}
運行server和client發現,server僅僅讀取了5字節的數據,而client其實發送了10字節的數據,也就是說,server僅當第一次監聽到了EPOLLIN事件,由于沒有讀取完數據,而且采用的是ET模式,狀態在此之后不發生變化,因此server再也接收不到EPOLLIN事件了.
(友情提示:上面的這個測試客戶端,當你關閉它的時候會再次出發IO可讀事件給server,此時server就會去讀取剩下的5字節數據了,但是這一事件與前面描述的ET性質并不矛盾.)
如果我們把client改為這樣:
#!/usr/bin/perl
use IO::Socket;
my $host = "127.0.0.1";
my $port = 5000;
my $socket = IO::Socket::INET->new("$host:$port") or die "create socket error $@";
my $msg_out = "1234567890";
print $socket $msg_out;
print "now send over, go to sleep
\n";
sleep(5);
print "5 second gone
send another line\n";
print $socket $msg_out;
while (1)
{
sleep(1);
}
可以發現,在server接收完5字節的數據之后一直監聽不到client的事件,而當client休眠5秒之后重新發送數據,server再次監聽到了變化,只不過因為只是讀取了5個字節,仍然有10個字節的數據(client第二次發送的數據)沒有接收完.
如果上面的實驗中,對accept的socket都采用的是LT模式,那么只要還有數據留在buffer中,server就會繼續得到通知,讀者可以自行改動代碼進行實驗.
基于這兩個實驗,可以得出這樣的結論:ET模式僅當狀態發生變化的時候才獲得通知,這里所謂的狀態的變化并不包括緩沖區中還有未處理的數據,也就是說,如果要采用ET模式,需要一直read/write直到出錯為止,很多人反映為什么采用ET模式只接收了一部分數據就再也得不到通知了,大多因為這樣;而LT模式是只要有數據沒有處理就會一直通知下去的.
補充說明一下這里一直強調的"狀態變化"是什么:
1)對于監聽可讀事件時,如果是socket是監聽socket,那么當有新的主動連接到來為狀態發生變化;對一般的socket而言,協議棧中相應的緩
沖區有新的數據為狀態發生變化.但是,如果在一個時間同時接收了N個連接(N>1),但是監聽socket只accept了一個連接,那么其它未
accept的連接將不會在ET模式下給監聽socket發出通知,此時狀態不發生變化;對于一般的socket,就如例子中而言,如果對應的緩沖區本身
已經有了N字節的數據,而只取出了小于N字節的數據,那么殘存的數據不會造成狀態發生變化.
2)對于監聽可寫事件時,同理可推,不再詳述.
而不論是監聽可讀還是可寫,對方關閉socket連接都將造成狀態發生變化,比如在例子中,如果強行中斷client腳本,也就是主動中斷了socket連接,那么都將造成server端發生狀態的變化,從而server得到通知,將已經在本方緩沖區中的數據讀出.
把前面的描述可以總結如下:僅當對方的動作(發出數據,關閉連接等)造成的事件才能導致狀態發生變化,而本方協議棧中已經處理的事件(包括接收了對方的數
據,接收了對方的主動連接請求)并不是造成狀態發生變化的必要條件,狀態變化一定是對方造成的.所以在ET模式下的,必須一直處理到出錯或者完全處理完
畢,才能進行下一個動作,否則可能會發生錯誤.
另外,從這個例子中,也可以闡述一些基本的網絡編程概念.首先,連接的兩端中,一端發送成功并不代表著對方上層應用程序接收成功, 就拿上面的client測試程序來說,10字節的數據已經發送成功,但是上層的server并沒有調用read讀取數據,因此發送成功僅僅說明了數據被對方的協議棧接收存放在了相應的buffer中,而上層的應用程序是否接收了這部分數據不得而知;同樣的,讀取數據時也只代表著本方協議棧的對應buffer中有數據可讀,而此時時候在對端是否在發送數據也不得而知.