• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            from http://docs.continuum.io/anaconda-cluster/examples/spark-caffe

            Deep Learning (Spark, Caffe, GPU)

            Description

            To demonstrate the capability of running a distributed job in PySpark using a GPU, this example uses a neural network library, Caffe. Below is a trivial example of using Caffe on a Spark cluster; although this is redundant, it demonstrates the capability of training neural networks with GPUs.

            For this example, we recommend the use of the AMI ami-2cbf3e44 and the instance type g2.2xlarge. An example profile (to be placed in ~/.acluster/profiles.d/gpu_profile.yaml) is shown below:

            name: gpu_profile
            node_id: ami-2cbf3e44 # Ubuntu 14.04 - IS HVM - Cuda 6.5
            user: ubuntu
            node_type: g2.2xlarge
            num_nodes: 3
            provider: aws
            plugins:
              - spark-yarn
              - notebook
            

            Download

            To execute this example, download the: spark-caffe.py example script or spark-caffe.ipynbexample notebook.

            Installation

            The Spark + YARN plugin can be installed on the cluster using the following command:

            $ acluster install spark-yarn
            

            Once the Spark + YARN plugin is installed, you can view the YARN UI in your browser using the following command:

            $ acluster open yarn
            

            Dependencies

            First, we need to bootstrap Caffe and its dependencies on all of the nodes. We provide a bash script that will install Caffe from source: bootstrap-caffe.sh. The following command can be used to upload the bootstrap-caffe.sh script to all of the nodes and execute it in parallel:

            $ acluster submit bootstrap-caffe.sh --all
            

            After a few minues, Caffe and its dependencies will be installed on the cluster nodes and the job can be started.

            Running the Job

            Here is the complete script to run the Spark + GPU with Caffe example in PySpark:

            # spark-caffe.py from pyspark import SparkConf from pyspark import SparkContext  conf = SparkConf() conf.setMaster('yarn-client') conf.setAppName('spark-caffe') sc = SparkContext(conf=conf)   def noop(x):     import socket     return socket.gethostname()  rdd = sc.parallelize(range(2), 2) hosts = rdd.map(noop).distinct().collect() print hosts   def caffe_process(x):     import os     os.environ['PATH'] = '/usr/local/cuda/bin' + ':' + os.environ['PATH']     os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:/home/ubuntu/pombredanne-https-gitorious.org-mdb-mdb.git-9cc04f604f80/libraries/liblmdb'     import subprocess     proc = subprocess.Popen('cd /home/ubuntu/caffe && bash ./examples/mnist/train_lenet.sh', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)     out, err = proc.communicate()     return proc.returncode, out, err  rdd = sc.parallelize(range(2), 2) ret = rdd.map(caffe_process).distinct().collect() print ret 

            You can submit the script to the Spark cluster using the submit command.

            $ acluster submit spark-caffe.py 

            After the script completes, the trained Caffe model can be found at/home/ubuntu/caffe/examples/mnist/lenet_iter_10000.caffemodel on all of the compute nodes.

            posted on 2015-10-14 17:25 閱讀(3603) 評論(1)  編輯 收藏 引用 所屬分類: life關于人工智能的yy

            評論:
            # re: Deep Learning (Spark, Caffe, GPU) 2015-10-21 18:19 | 春秋十二月
            這是啥  回復  更多評論
              
            99久久99这里只有免费的精品| 日韩十八禁一区二区久久| 国产精品永久久久久久久久久| 人妻系列无码专区久久五月天| 亚洲精品午夜国产va久久| 亚洲AV日韩AV天堂久久| 国产精品久久久久久影院| 国产精久久一区二区三区| 7777精品伊人久久久大香线蕉 | 亚洲av日韩精品久久久久久a | 亚洲国产精品综合久久网络| 精品乱码久久久久久久| 午夜精品久久影院蜜桃| 一本久道久久综合狠狠爱| 人妻无码精品久久亚瑟影视 | 97久久国产亚洲精品超碰热| 久久青青草原精品国产软件| 精品久久久久久国产| 久久香蕉国产线看观看精品yw| 少妇高潮惨叫久久久久久| 一本大道久久a久久精品综合 | 国产精品亚洲综合久久| 品成人欧美大片久久国产欧美| 欧洲人妻丰满av无码久久不卡| 深夜久久AAAAA级毛片免费看 | 伊人久久大香线蕉综合Av| 久久国产成人| 无码人妻少妇久久中文字幕| 久久亚洲国产中v天仙www| 久久久久国产成人精品亚洲午夜| 国产亚洲精久久久久久无码AV| 久久精品国产亚洲AV无码麻豆| 丰满少妇高潮惨叫久久久| 日批日出水久久亚洲精品tv| 精品久久久久久国产91| 九九99精品久久久久久| 国产精品天天影视久久综合网| 91精品国产91久久综合| 狠狠色丁香婷综合久久| 久久精品国产久精国产思思| 少妇内射兰兰久久|