• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            from http://docs.continuum.io/anaconda-cluster/examples/spark-caffe

            Deep Learning (Spark, Caffe, GPU)

            Description

            To demonstrate the capability of running a distributed job in PySpark using a GPU, this example uses a neural network library, Caffe. Below is a trivial example of using Caffe on a Spark cluster; although this is redundant, it demonstrates the capability of training neural networks with GPUs.

            For this example, we recommend the use of the AMI ami-2cbf3e44 and the instance type g2.2xlarge. An example profile (to be placed in ~/.acluster/profiles.d/gpu_profile.yaml) is shown below:

            name: gpu_profile
            node_id: ami-2cbf3e44 # Ubuntu 14.04 - IS HVM - Cuda 6.5
            user: ubuntu
            node_type: g2.2xlarge
            num_nodes: 3
            provider: aws
            plugins:
              - spark-yarn
              - notebook
            

            Download

            To execute this example, download the: spark-caffe.py example script or spark-caffe.ipynbexample notebook.

            Installation

            The Spark + YARN plugin can be installed on the cluster using the following command:

            $ acluster install spark-yarn
            

            Once the Spark + YARN plugin is installed, you can view the YARN UI in your browser using the following command:

            $ acluster open yarn
            

            Dependencies

            First, we need to bootstrap Caffe and its dependencies on all of the nodes. We provide a bash script that will install Caffe from source: bootstrap-caffe.sh. The following command can be used to upload the bootstrap-caffe.sh script to all of the nodes and execute it in parallel:

            $ acluster submit bootstrap-caffe.sh --all
            

            After a few minues, Caffe and its dependencies will be installed on the cluster nodes and the job can be started.

            Running the Job

            Here is the complete script to run the Spark + GPU with Caffe example in PySpark:

            # spark-caffe.py from pyspark import SparkConf from pyspark import SparkContext  conf = SparkConf() conf.setMaster('yarn-client') conf.setAppName('spark-caffe') sc = SparkContext(conf=conf)   def noop(x):     import socket     return socket.gethostname()  rdd = sc.parallelize(range(2), 2) hosts = rdd.map(noop).distinct().collect() print hosts   def caffe_process(x):     import os     os.environ['PATH'] = '/usr/local/cuda/bin' + ':' + os.environ['PATH']     os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:/home/ubuntu/pombredanne-https-gitorious.org-mdb-mdb.git-9cc04f604f80/libraries/liblmdb'     import subprocess     proc = subprocess.Popen('cd /home/ubuntu/caffe && bash ./examples/mnist/train_lenet.sh', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)     out, err = proc.communicate()     return proc.returncode, out, err  rdd = sc.parallelize(range(2), 2) ret = rdd.map(caffe_process).distinct().collect() print ret 

            You can submit the script to the Spark cluster using the submit command.

            $ acluster submit spark-caffe.py 

            After the script completes, the trained Caffe model can be found at/home/ubuntu/caffe/examples/mnist/lenet_iter_10000.caffemodel on all of the compute nodes.

            posted on 2015-10-14 17:25 閱讀(3584) 評論(1)  編輯 收藏 引用 所屬分類: life關于人工智能的yy

            評論:
            # re: Deep Learning (Spark, Caffe, GPU) 2015-10-21 18:19 | 春秋十二月
            這是啥  回復  更多評論
              
            精品久久久久久无码中文字幕| 99久久夜色精品国产网站| 久久精品黄AA片一区二区三区| 久久夜色精品国产噜噜麻豆| 狠狠色婷婷久久一区二区三区| 日韩欧美亚洲综合久久影院d3| 久久国产成人亚洲精品影院| 亚洲乱码中文字幕久久孕妇黑人| 久久精品国产亚洲综合色| 亚洲精品乱码久久久久久不卡| 国产精品免费看久久久| 日本精品久久久久影院日本| 久久99精品国产自在现线小黄鸭 | 久久午夜无码鲁丝片秋霞 | 精品国产VA久久久久久久冰| 狠狠色丁香婷婷综合久久来来去| 久久久SS麻豆欧美国产日韩| 99久久国产热无码精品免费久久久久| 亚洲伊人久久综合影院| 国产99久久久国产精免费| 亚洲精品美女久久777777| 性做久久久久久久久久久| 亚洲国产精品婷婷久久| 精品综合久久久久久888蜜芽| 亚洲人成电影网站久久| 久久国产精品免费一区二区三区| …久久精品99久久香蕉国产| 中文字幕久久久久人妻| 亚洲欧洲久久av| 亚洲一区精品伊人久久伊人 | 99久久免费国产精精品| 亚洲AV无码久久精品狠狠爱浪潮| 亚洲国产日韩欧美久久| 久久久久久国产a免费观看黄色大片| 久久国产成人午夜AV影院| 久久精品国产一区二区三区| 久久高潮一级毛片免费| 欧美一级久久久久久久大片| 久久久久国产一区二区三区| 久久久久无码精品国产app| 久久久久国产一区二区三区|