• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            from http://docs.continuum.io/anaconda-cluster/examples/spark-caffe

            Deep Learning (Spark, Caffe, GPU)

            Description

            To demonstrate the capability of running a distributed job in PySpark using a GPU, this example uses a neural network library, Caffe. Below is a trivial example of using Caffe on a Spark cluster; although this is redundant, it demonstrates the capability of training neural networks with GPUs.

            For this example, we recommend the use of the AMI ami-2cbf3e44 and the instance type g2.2xlarge. An example profile (to be placed in ~/.acluster/profiles.d/gpu_profile.yaml) is shown below:

            name: gpu_profile
            node_id: ami-2cbf3e44 # Ubuntu 14.04 - IS HVM - Cuda 6.5
            user: ubuntu
            node_type: g2.2xlarge
            num_nodes: 3
            provider: aws
            plugins:
              - spark-yarn
              - notebook
            

            Download

            To execute this example, download the: spark-caffe.py example script or spark-caffe.ipynbexample notebook.

            Installation

            The Spark + YARN plugin can be installed on the cluster using the following command:

            $ acluster install spark-yarn
            

            Once the Spark + YARN plugin is installed, you can view the YARN UI in your browser using the following command:

            $ acluster open yarn
            

            Dependencies

            First, we need to bootstrap Caffe and its dependencies on all of the nodes. We provide a bash script that will install Caffe from source: bootstrap-caffe.sh. The following command can be used to upload the bootstrap-caffe.sh script to all of the nodes and execute it in parallel:

            $ acluster submit bootstrap-caffe.sh --all
            

            After a few minues, Caffe and its dependencies will be installed on the cluster nodes and the job can be started.

            Running the Job

            Here is the complete script to run the Spark + GPU with Caffe example in PySpark:

            # spark-caffe.py from pyspark import SparkConf from pyspark import SparkContext  conf = SparkConf() conf.setMaster('yarn-client') conf.setAppName('spark-caffe') sc = SparkContext(conf=conf)   def noop(x):     import socket     return socket.gethostname()  rdd = sc.parallelize(range(2), 2) hosts = rdd.map(noop).distinct().collect() print hosts   def caffe_process(x):     import os     os.environ['PATH'] = '/usr/local/cuda/bin' + ':' + os.environ['PATH']     os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:/home/ubuntu/pombredanne-https-gitorious.org-mdb-mdb.git-9cc04f604f80/libraries/liblmdb'     import subprocess     proc = subprocess.Popen('cd /home/ubuntu/caffe && bash ./examples/mnist/train_lenet.sh', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)     out, err = proc.communicate()     return proc.returncode, out, err  rdd = sc.parallelize(range(2), 2) ret = rdd.map(caffe_process).distinct().collect() print ret 

            You can submit the script to the Spark cluster using the submit command.

            $ acluster submit spark-caffe.py 

            After the script completes, the trained Caffe model can be found at/home/ubuntu/caffe/examples/mnist/lenet_iter_10000.caffemodel on all of the compute nodes.

            posted on 2015-10-14 17:25 閱讀(3606) 評論(1)  編輯 收藏 引用 所屬分類: life關于人工智能的yy

            評論:
            # re: Deep Learning (Spark, Caffe, GPU) 2015-10-21 18:19 | 春秋十二月
            這是啥  回復  更多評論
              
            久久综合久久美利坚合众国 | 国产亚洲精午夜久久久久久 | 久久精品国产AV一区二区三区| 欧美性猛交xxxx免费看久久久 | 狠狠88综合久久久久综合网| 国产Av激情久久无码天堂| 欧美激情精品久久久久| 亚洲人AV永久一区二区三区久久| 久久人人爽人人爽人人片AV不 | 伊人伊成久久人综合网777| 奇米综合四色77777久久| 国产精品成人久久久久久久| 久久WWW免费人成一看片| 国产毛片久久久久久国产毛片| 7777久久亚洲中文字幕| 性色欲网站人妻丰满中文久久不卡| 精品久久久久久久久久中文字幕 | 97久久超碰国产精品旧版| 久久午夜无码鲁丝片秋霞| 国产福利电影一区二区三区久久老子无码午夜伦不 | 久久精品国产亚洲77777| 伊人久久大香线蕉av不卡| 伊人久久精品无码av一区| 久久亚洲中文字幕精品一区| 久久综合噜噜激激的五月天| 久久综合88熟人妻| 久久亚洲高清观看| 武侠古典久久婷婷狼人伊人| 国产色综合久久无码有码| 欧美牲交A欧牲交aⅴ久久| 久久精品青青草原伊人| 久久久老熟女一区二区三区| 久久精品国产亚洲av麻豆蜜芽 | 亚洲第一永久AV网站久久精品男人的天堂AV | 久久91精品久久91综合| 久久精品人人做人人妻人人玩| 久久久亚洲欧洲日产国码二区| 18岁日韩内射颜射午夜久久成人| 久久精品99无色码中文字幕| 久久久精品波多野结衣| 亚洲一级Av无码毛片久久精品|