• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            from http://docs.continuum.io/anaconda-cluster/examples/spark-caffe

            Deep Learning (Spark, Caffe, GPU)

            Description

            To demonstrate the capability of running a distributed job in PySpark using a GPU, this example uses a neural network library, Caffe. Below is a trivial example of using Caffe on a Spark cluster; although this is redundant, it demonstrates the capability of training neural networks with GPUs.

            For this example, we recommend the use of the AMI ami-2cbf3e44 and the instance type g2.2xlarge. An example profile (to be placed in ~/.acluster/profiles.d/gpu_profile.yaml) is shown below:

            name: gpu_profile
            node_id: ami-2cbf3e44 # Ubuntu 14.04 - IS HVM - Cuda 6.5
            user: ubuntu
            node_type: g2.2xlarge
            num_nodes: 3
            provider: aws
            plugins:
              - spark-yarn
              - notebook
            

            Download

            To execute this example, download the: spark-caffe.py example script or spark-caffe.ipynbexample notebook.

            Installation

            The Spark + YARN plugin can be installed on the cluster using the following command:

            $ acluster install spark-yarn
            

            Once the Spark + YARN plugin is installed, you can view the YARN UI in your browser using the following command:

            $ acluster open yarn
            

            Dependencies

            First, we need to bootstrap Caffe and its dependencies on all of the nodes. We provide a bash script that will install Caffe from source: bootstrap-caffe.sh. The following command can be used to upload the bootstrap-caffe.sh script to all of the nodes and execute it in parallel:

            $ acluster submit bootstrap-caffe.sh --all
            

            After a few minues, Caffe and its dependencies will be installed on the cluster nodes and the job can be started.

            Running the Job

            Here is the complete script to run the Spark + GPU with Caffe example in PySpark:

            # spark-caffe.py from pyspark import SparkConf from pyspark import SparkContext  conf = SparkConf() conf.setMaster('yarn-client') conf.setAppName('spark-caffe') sc = SparkContext(conf=conf)   def noop(x):     import socket     return socket.gethostname()  rdd = sc.parallelize(range(2), 2) hosts = rdd.map(noop).distinct().collect() print hosts   def caffe_process(x):     import os     os.environ['PATH'] = '/usr/local/cuda/bin' + ':' + os.environ['PATH']     os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:/home/ubuntu/pombredanne-https-gitorious.org-mdb-mdb.git-9cc04f604f80/libraries/liblmdb'     import subprocess     proc = subprocess.Popen('cd /home/ubuntu/caffe && bash ./examples/mnist/train_lenet.sh', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)     out, err = proc.communicate()     return proc.returncode, out, err  rdd = sc.parallelize(range(2), 2) ret = rdd.map(caffe_process).distinct().collect() print ret 

            You can submit the script to the Spark cluster using the submit command.

            $ acluster submit spark-caffe.py 

            After the script completes, the trained Caffe model can be found at/home/ubuntu/caffe/examples/mnist/lenet_iter_10000.caffemodel on all of the compute nodes.

            posted on 2015-10-14 17:25 閱讀(3603) 評(píng)論(1)  編輯 收藏 引用 所屬分類: life關(guān)于人工智能的yy

            評(píng)論:
            # re: Deep Learning (Spark, Caffe, GPU) 2015-10-21 18:19 | 春秋十二月
            這是啥  回復(fù)  更多評(píng)論
              
            一日本道伊人久久综合影| 久久丫精品国产亚洲av不卡| AAA级久久久精品无码区| 久久精品国产亚洲5555| 久久久久亚洲av毛片大| 波多野结衣久久一区二区| 久久精品亚洲精品国产色婷 | 亚洲欧洲中文日韩久久AV乱码| 久久一本综合| 久久久精品一区二区三区| 99久久综合国产精品免费| 91精品婷婷国产综合久久| 2021国内精品久久久久久影院| 91久久精品视频| 99久久精品影院老鸭窝| 欧美成人免费观看久久| 国产精品青草久久久久福利99| 久久亚洲精品成人AV| 久久人人爽人人爽人人爽| 久久精品无码一区二区日韩AV| 国产韩国精品一区二区三区久久| 久久久久久午夜精品| 久久男人中文字幕资源站| 精品99久久aaa一级毛片| 国内精品久久久久伊人av| 久久久国产打桩机| 亚洲伊人久久综合影院| 精品无码久久久久久国产| 国产精品久久亚洲不卡动漫| 国产69精品久久久久APP下载| 久久久久婷婷| 久久人人爽人人爽人人片AV麻豆| 欧美精品一区二区精品久久 | 国产成人精品综合久久久久| 久久精品国产亚洲一区二区三区| 久久久九九有精品国产| 国产午夜精品理论片久久影视| 2022年国产精品久久久久| 九九精品99久久久香蕉| 99久久婷婷国产综合亚洲| 精品久久久久香蕉网|