• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            from http://docs.continuum.io/anaconda-cluster/examples/spark-caffe

            Deep Learning (Spark, Caffe, GPU)

            Description

            To demonstrate the capability of running a distributed job in PySpark using a GPU, this example uses a neural network library, Caffe. Below is a trivial example of using Caffe on a Spark cluster; although this is redundant, it demonstrates the capability of training neural networks with GPUs.

            For this example, we recommend the use of the AMI ami-2cbf3e44 and the instance type g2.2xlarge. An example profile (to be placed in ~/.acluster/profiles.d/gpu_profile.yaml) is shown below:

            name: gpu_profile
            node_id: ami-2cbf3e44 # Ubuntu 14.04 - IS HVM - Cuda 6.5
            user: ubuntu
            node_type: g2.2xlarge
            num_nodes: 3
            provider: aws
            plugins:
              - spark-yarn
              - notebook
            

            Download

            To execute this example, download the: spark-caffe.py example script or spark-caffe.ipynbexample notebook.

            Installation

            The Spark + YARN plugin can be installed on the cluster using the following command:

            $ acluster install spark-yarn
            

            Once the Spark + YARN plugin is installed, you can view the YARN UI in your browser using the following command:

            $ acluster open yarn
            

            Dependencies

            First, we need to bootstrap Caffe and its dependencies on all of the nodes. We provide a bash script that will install Caffe from source: bootstrap-caffe.sh. The following command can be used to upload the bootstrap-caffe.sh script to all of the nodes and execute it in parallel:

            $ acluster submit bootstrap-caffe.sh --all
            

            After a few minues, Caffe and its dependencies will be installed on the cluster nodes and the job can be started.

            Running the Job

            Here is the complete script to run the Spark + GPU with Caffe example in PySpark:

            # spark-caffe.py from pyspark import SparkConf from pyspark import SparkContext  conf = SparkConf() conf.setMaster('yarn-client') conf.setAppName('spark-caffe') sc = SparkContext(conf=conf)   def noop(x):     import socket     return socket.gethostname()  rdd = sc.parallelize(range(2), 2) hosts = rdd.map(noop).distinct().collect() print hosts   def caffe_process(x):     import os     os.environ['PATH'] = '/usr/local/cuda/bin' + ':' + os.environ['PATH']     os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:/home/ubuntu/pombredanne-https-gitorious.org-mdb-mdb.git-9cc04f604f80/libraries/liblmdb'     import subprocess     proc = subprocess.Popen('cd /home/ubuntu/caffe && bash ./examples/mnist/train_lenet.sh', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)     out, err = proc.communicate()     return proc.returncode, out, err  rdd = sc.parallelize(range(2), 2) ret = rdd.map(caffe_process).distinct().collect() print ret 

            You can submit the script to the Spark cluster using the submit command.

            $ acluster submit spark-caffe.py 

            After the script completes, the trained Caffe model can be found at/home/ubuntu/caffe/examples/mnist/lenet_iter_10000.caffemodel on all of the compute nodes.

            posted on 2015-10-14 17:25 閱讀(3584) 評論(1)  編輯 收藏 引用 所屬分類: life關于人工智能的yy

            評論:
            # re: Deep Learning (Spark, Caffe, GPU) 2015-10-21 18:19 | 春秋十二月
            這是啥  回復  更多評論
              
            国产成人精品久久亚洲高清不卡| 午夜人妻久久久久久久久| 亚洲国产精品久久66| 94久久国产乱子伦精品免费| 久久久免费观成人影院| 一本一本久久a久久综合精品蜜桃| 久久99国产精品久久| 亚洲国产成人精品无码久久久久久综合| 精品无码久久久久国产动漫3d| 岛国搬运www久久| 亚洲国产精品久久久天堂| 久久精品无码一区二区三区免费| 亚洲欧洲中文日韩久久AV乱码| 日本免费一区二区久久人人澡| 久久国产免费直播| 亚洲欧美久久久久9999| 国产成人精品久久亚洲高清不卡| 亚洲午夜无码久久久久| 欧美久久一级内射wwwwww.| 一级做a爰片久久毛片人呢| 久久久久亚洲AV无码麻豆| 久久久久av无码免费网| 免费一级做a爰片久久毛片潮| 青青草国产精品久久久久| 麻豆一区二区99久久久久| 精品多毛少妇人妻AV免费久久| 成人国内精品久久久久影院VR| 97久久综合精品久久久综合| 亚洲国产另类久久久精品| 久久精品国产亚洲AV忘忧草18| 亚洲欧洲中文日韩久久AV乱码| 青青草原综合久久大伊人导航| 久久久久综合国产欧美一区二区| 99久久婷婷国产综合精品草原| 久久中文娱乐网| 久久精品国产一区| 国产精品99久久久久久宅男| 久久久久18| 热久久最新网站获取| 久久久久亚洲av成人网人人软件| 亚洲伊人久久精品影院|