• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            [USACO 09NOV] silver xoinc [dp]

            Posted on 2009-11-12 00:20 rikisand 閱讀(513) 評(píng)論(0)  編輯 收藏 引用 所屬分類(lèi): AlgorithmUSACO

            周六第一次做usaco玩,bronze的輕松切掉,然后申請(qǐng)promote,下午批準(zhǔn),話說(shuō)rob 效率好高啊~ 于是繼續(xù)做silver 就遇到這個(gè)題- -!糾結(jié)了半天放棄····知道是dp 也考慮了方法就是 理不清楚;不知道是不是一天沒(méi)吃飯的緣故·····

            今天題解出來(lái)了~ 先看了大概思路 然后自己寫(xiě)出來(lái)了~

            題目:

            Farmer John's cows like to play coin games so FJ has invented with
            a new two-player coin game called Xoinc for them.
            
            Initially a stack of N (5 <= N <= 2,000) coins sits on the ground;
            coin i from the top has integer value C_i (1 <= C_i <= 100,000).
            The first player starts the game by taking the top one or two coins
            (C_1 and maybe C_2) from the stack. If the first player takes just
            the top coin, the second player may take the following one or two
            coins in the next turn. If the first player takes two coins then
            the second player may take the top one, two, three or four coins
            from the stack. In each turn, the current player must take at least
            one coin and at most two times the amount of coins last taken by
            the opposing player. The game is over when there are no more coins
            to take.
            
            Afterwards, they can use the value of the coins they have taken
            from the stack to buy treats from FJ, so naturally, their purpose
            in the game is to maximize the total value of the coins they take.
            Assuming the second player plays optimally to maximize his own
            winnings, what is the highest total value that the first player can
            have when the game is over?
            
            MEMORY LIMIT: 20 MB
            
            PROBLEM NAME: xoinc
            
            INPUT FORMAT:
            
            * Line 1: A single integer: N
            
            * Lines 2..N+1: Line i+1 contains a single integer: C_i
            
            SAMPLE INPUT (file xoinc.in):
            
            5
            1
            3
            1
            7
            2
            簡(jiǎn)單來(lái)說(shuō)就是兩個(gè)人輪流取coins,每個(gè)人每次取得個(gè)數(shù)為1- 2*n;n為上一輪對(duì)方取得數(shù)目,
            求兩個(gè)人都是用最佳策略,先取得那個(gè)家伙最多能拿到多少硬幣。貌似可以算是簡(jiǎn)單博弈論的思想
            思路:
                    coins[1···N] 從下到上 sum[1···N] 剩下 i個(gè)的和
                    找到無(wú)后效性的子問(wèn)題。考慮在還剩下p個(gè)錢(qián)幣時(shí)候的情況,此時(shí)可以拿k個(gè)錢(qián)
            由于條件,k的大小受上一輪拿的個(gè)數(shù)i的限制 ,所以我們要加上一個(gè)變量i。得到
            dp[p][i]這個(gè)子問(wèn)題。那么容易得到
            dp[p][i]=max(1=<k<=i*2){SuM(p to p-k+1)+SuM(p-k to 1)-dp[p-k][k]}
                        =max(1=<k<=i*2){sum[p]-dp[p-k][k]}
            按照這個(gè)可以得到一個(gè)O(N^3)的算法

            oidsolve(){
              
            for(inti=1;i<=N;i++)
            //剩下i個(gè)
                   
            for(intj=1;j<=N;j++)
            //上一人拿了j 個(gè)
                       
            for(intk=1;k<=j*2&&i-k>=0
            ;k++){
                            dp[i][j]=max(dp[i][j],sum[
            1]-sum[i+1
            ]-dp[i-k][k]);
                        }
                ret=dp[N][
            1
            ];
            }

             三重遞歸 ,最多可以過(guò)500的數(shù)據(jù)量  觀察可以得出 dp[p][j] 和 dp[p][j+1] 的計(jì)算有很多的重疊
            因?yàn)?上次拿了j+1 則可以比 dp[p][j] 多拿 2 個(gè) 

            然后,由于考慮j的范圍 應(yīng)該為 N-i+1

            這樣得到了最終代碼:

            scanf("%d",&N);
            for(int i=1;i<=N;i++)    scanf("%d",coins+i);//{fin>>coins[i]; }
            sum[0]=0;
            for(int i=1;i<=N;i++)     sum[i]=sum[i-1]+coins[N-i+1]; 
            for(int i=1;i<=N;i++)        //剩下i個(gè)
            for(int j=1;j<= N-i +1;j++){ // 上次拿了j個(gè)
            if(dp[i][j]<dp[i][j-1])dp[i][j]=dp[i][j-1];
            if(2*j-1<=i&&dp[i][j]<sum[i]-dp[i-2*j+1][2*j-1]) dp[i][j]=sum[i]-dp[i-2*j+1][2*j-1];
            if(2*j<=i&&dp[i][j]<sum[i]-dp[i-2*j][2*j]) dp[i][j]= sum[i]-dp[i-2*j][2*j];
            }
            printf("%d\n",dp[N][1]);

            很晚了 ,先寫(xiě)這么多 ,有空把bronze的寫(xiě)了

            3個(gè)月后注:事實(shí)證明,當(dāng)時(shí)么有時(shí)間 ~以后更沒(méi)有時(shí)間 ~~~ hoho`````````~~~~~~~``````````

            久久se精品一区二区| 免费精品久久久久久中文字幕| 久久精品中文字幕大胸| 亚洲国产精品成人久久| 国产精品久久永久免费| 精品久久久久一区二区三区| 亚洲精品综合久久| 中文精品久久久久国产网址| 人人妻久久人人澡人人爽人人精品| 久久久久久久久久久久中文字幕| 亚洲国产成人久久精品动漫| 噜噜噜色噜噜噜久久| 久久96国产精品久久久| 日本WV一本一道久久香蕉| 国产毛片久久久久久国产毛片| 久久免费看黄a级毛片| 久久露脸国产精品| 国产精品青草久久久久婷婷| 三级三级久久三级久久| 久久久久国产视频电影| 97超级碰碰碰碰久久久久| 日韩人妻无码精品久久免费一| 久久午夜福利电影| 国产免费久久久久久无码| 无码人妻久久一区二区三区 | 国产无套内射久久久国产| 无码日韩人妻精品久久蜜桃| 久久精品人人做人人爽电影| 久久精品国产只有精品66| 久久国产午夜精品一区二区三区| 久久福利青草精品资源站| 久久99毛片免费观看不卡 | 超级97碰碰碰碰久久久久最新| 国产亚洲美女精品久久久| 欧美精品一区二区精品久久| 国产精品久久免费| 久久国产精品久久精品国产| 久久夜色精品国产亚洲| 久久精品一区二区国产| 99久久人人爽亚洲精品美女| 久久久久亚洲爆乳少妇无 |