• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 0912 月賽

            Posted on 2009-12-13 21:14 rikisand 閱讀(317) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO

            silver組:

            比賽那天感冒,第一題就弄暈了,現在題解出來了,補上吧~~

            暫時只有第一題的:

            Problem 6: Bobsledding [Brian Jacokes, 2009]
            
            Bessie has entered a bobsled competition because she hopes her hefty
            weight will give her an advantage over the L meter course (2 <= L
            <= 1,000,000,000).
            
            Bessie will push off the starting line at 1 meter per second, but
            her speed can change while she rides along the course. Near the
            middle of every meter Bessie travels, she can change her speed
            either by using gravity to accelerate by one meter per second or
            by braking to stay at the same speed or decrease her speed by one
            meter per second.
            
            Naturally, Bessie must negotiate N (1 <= N <= 100,000) turns on the
            way down the hill. Turn i is located T_i meters from the course
            start (1 <= T_i <= L-1), and she must be enter the corner meter at
            a speed of at most S_i meters per second (1 <= S_i <= 1,000,000,000).
            Bessie can cross the finish line at any speed she likes.
            
            Help Bessie learn the fastest speed she can attain without exceeding
            the speed limits on the turns.
            
            Consider this course with the meter markers as integers and the
            turn speed limits in brackets (e.g., '[3]'):
            
            |   1   2   3   4   5   6   7[3]
            |---+---+---+---+---+---+---+
            |                            \
            Start                         + 8    
                                           \
                                            + 9    
                                             \
                                              + 10       +++ 14 (finish)
                                               \         /
                                          11[1] +---+---+
                                                    12  13[8]
            
            Below is a chart of Bessie's speeds at the beginning of each meter length
            of the course:
            
            Max:                              3               1       8
            Mtrs: 0   1   2   3   4   5   6   7   8   9  10  11  12  13  14 
            Spd:  1   2   3   4   5   5   4   3   4   3   2   1   2   3   4
            
            Her maximum speed was 5 near the beginning of meter 4.
            
            PROBLEM NAME: bobsled
            
            INPUT FORMAT:
            
            * Line 1: Two space-separated integers: L and N
            
            * Lines 2..N+1: Line i+1 describes turn i with two space-separated
                    integers: T_i and S_i
            
            SAMPLE INPUT (file bobsled.in):
            
            14 3
            7 3
            11 1
            13 8
            
            OUTPUT FORMAT:
            
            * Line 1: A single integer, representing the maximum speed which
                    Bessie can attain between the start and the finish line,
                    inclusive.
            
            SAMPLE OUTPUT (file bobsled.out):
            
            5

             

            題目看起來挺復雜,其實主要是求出各個turn處的最大速度,分析得到每個turn的最大速度需要滿足三個條件, M_i = min (S_i , t_i – t_{i-1} + M_{i-1} , S_k + t_k – t_i [for all k > i ] )

            因此處理每一個turn都要查詢N個turn N*N的復雜度顯然對于大數據要TLE的

            逆向思考,如果我們反過來考慮,對于每一個之后的turn來說 如:i  如果他最大速度為 m_i

            那么 在turn i-1處,他不能超過的最大速度 m_{i-1} = min(S_i,m_i+t_i – t_{i-1});這樣成功的把后面兩個限制轉換為逆推的結果而不是向后查詢

            剩下的問題便是如果知道兩個turn之間距離,以及turn的速度最大值,如何求出之間的最大值,畫圖顯然可以得到一種算式 maxspeed = min(s1,s2) + (dist2-dist1+abs(s1-s2))/2;

            或者 maxspeed = max(s1,s2) + (dist2 – dist1 – abs(s1-s2))/2;

            注意在開頭和結尾加入虛擬的turn就可以了

             

            Code Snippet
            #define REP(i,n)  for(  int (i) = 0 ; i < (n) ; ++i)
            using namespace std;
            int L,N;
            struct node{
                int dist;
                int speed;
            };
            vector<node> vec;
            bool comp(const node& n1,const node& n2){
                return n1.dist<n2.dist;
            }
            vector<int> up,down;
            #define inf 98765433
            void solve()
            {
                //freopen("e:\\usaco\\bobsled.11.in","r",stdin);
                freopen("bobsled.in","r",stdin);
                freopen("bobsled.out","w",stdout);
                cin>>L>>N;
                vec.resize(N+2); up.resize(N+2,0); down.resize(N+2,0);
                vec[0].dist =0;vec[0].speed =1;
                vec[N+1].dist =L;vec[N+1].speed=inf;
                REP(i,N) scanf("%d %d",&vec[i+1].dist,&vec[i+1].speed);
                sort(vec.begin(),vec.end(),comp);
                down[N+1] = inf;
                for(int i=N;i>0;i--)
                    down[i] = min(vec[i].speed,vec[i+1].dist-vec[i].dist+down[i+1]);
                int maxspeed = 1;up[0]=1;
                for(int i=1;i<N+2;i++){
                    up[i] = min(down[i],up[i-1]+vec[i].dist - vec[i-1].dist);
                    maxspeed = max(maxspeed,min(up[i],up[i-1])+(vec[i].dist-vec[i-1].dist+abs(up[i]-up[i-1]))/2);
                }
                cout<<maxspeed<<endl;
            }


            int main()
            {
                solve();
                return 0;
            }

            ----------------------------------------------3個月后的修改線-----------------------------------------------------------------

            第一個復習周末 ,先看的這道題,過了這么久果然又杯具的不會了~~之前的解釋寫的有些模糊。

            首先,如果要想達到最快速度,那么只需要求得每個turn 能夠達到的最快速度即可~

            所以題目編程求每個turn能達到的最快速度了。首先得到簡單的式子,也就是上面的min{1,2,3},第一個條件決定在這個turn我們可以加速達到的最大速度,后兩個條件為了防止滑的過快,減不下來不能通過自己以及以后的turn。按這種算法,我們必須對每一個turn遍歷之后的turn,很沒有效率。后面兩個條件是為了防止在turn處滑的過快~~那么每一個m_i 只需要滿足 min(S_i,m_{i+1}+t[i+1]-t[i]);只要這樣,就可以保證雪橇可以減速以通過下一個turn。顯然最后一個turn的 m_i 就是他的s_i,這樣遞推回去就能得到一組slowdown值,然后利用前面的式子 up[i]=min{m_i[i],up[i-1]+lenth};正向推回去就可以得到每一個turn的maxspeed。至于最大speed的算法上面已經給出了~

            ------------------希望下次可以直接做出來,不要再忘了。。。。-------------

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

            久久精品国产亚洲AV香蕉| 久久精品国产精品亚洲下载| 中文字幕无码免费久久| 久久天天躁狠狠躁夜夜躁2014| 亚洲欧美成人综合久久久| 成人久久精品一区二区三区| 久久国产成人| 久久99国产综合精品女同| 观看 国产综合久久久久鬼色 欧美 亚洲 一区二区 | 亚洲精品国产成人99久久| 久久99精品九九九久久婷婷| 亚洲色欲久久久综合网东京热| 国产精品毛片久久久久久久| 精品伊人久久久| 久久久久国产一区二区| 99re这里只有精品热久久 | 久久人做人爽一区二区三区| 狠狠色丁香久久婷婷综合五月 | 国产成人久久精品一区二区三区| 久久精品国产亚洲一区二区| 久久人妻无码中文字幕| 久久精品无码av| 国产激情久久久久影院小草| 国产亚洲综合久久系列| 久久夜色精品国产噜噜噜亚洲AV| 久久这里只有精品视频99| 国产99久久久久久免费看| 狠狠色婷婷综合天天久久丁香| 性欧美丰满熟妇XXXX性久久久 | 精品久久久久久久久久中文字幕| 久久久久无码精品国产| 99久久无色码中文字幕人妻| 偷偷做久久久久网站| 久久天天日天天操综合伊人av| 99久久精品无码一区二区毛片 | 久久久国产精华液| 伊人 久久 精品| 亚洲国产精品无码成人片久久| 思思久久好好热精品国产| 亚洲精品无码久久毛片| 思思久久99热只有频精品66|