• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 0912 月賽

            Posted on 2009-12-13 21:14 rikisand 閱讀(331) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO

            silver組:

            比賽那天感冒,第一題就弄暈了,現(xiàn)在題解出來了,補(bǔ)上吧~~

            暫時(shí)只有第一題的:

            Problem 6: Bobsledding [Brian Jacokes, 2009]
            
            Bessie has entered a bobsled competition because she hopes her hefty
            weight will give her an advantage over the L meter course (2 <= L
            <= 1,000,000,000).
            
            Bessie will push off the starting line at 1 meter per second, but
            her speed can change while she rides along the course. Near the
            middle of every meter Bessie travels, she can change her speed
            either by using gravity to accelerate by one meter per second or
            by braking to stay at the same speed or decrease her speed by one
            meter per second.
            
            Naturally, Bessie must negotiate N (1 <= N <= 100,000) turns on the
            way down the hill. Turn i is located T_i meters from the course
            start (1 <= T_i <= L-1), and she must be enter the corner meter at
            a speed of at most S_i meters per second (1 <= S_i <= 1,000,000,000).
            Bessie can cross the finish line at any speed she likes.
            
            Help Bessie learn the fastest speed she can attain without exceeding
            the speed limits on the turns.
            
            Consider this course with the meter markers as integers and the
            turn speed limits in brackets (e.g., '[3]'):
            
            |   1   2   3   4   5   6   7[3]
            |---+---+---+---+---+---+---+
            |                            \
            Start                         + 8    
                                           \
                                            + 9    
                                             \
                                              + 10       +++ 14 (finish)
                                               \         /
                                          11[1] +---+---+
                                                    12  13[8]
            
            Below is a chart of Bessie's speeds at the beginning of each meter length
            of the course:
            
            Max:                              3               1       8
            Mtrs: 0   1   2   3   4   5   6   7   8   9  10  11  12  13  14 
            Spd:  1   2   3   4   5   5   4   3   4   3   2   1   2   3   4
            
            Her maximum speed was 5 near the beginning of meter 4.
            
            PROBLEM NAME: bobsled
            
            INPUT FORMAT:
            
            * Line 1: Two space-separated integers: L and N
            
            * Lines 2..N+1: Line i+1 describes turn i with two space-separated
                    integers: T_i and S_i
            
            SAMPLE INPUT (file bobsled.in):
            
            14 3
            7 3
            11 1
            13 8
            
            OUTPUT FORMAT:
            
            * Line 1: A single integer, representing the maximum speed which
                    Bessie can attain between the start and the finish line,
                    inclusive.
            
            SAMPLE OUTPUT (file bobsled.out):
            
            5

             

            題目看起來挺復(fù)雜,其實(shí)主要是求出各個(gè)turn處的最大速度,分析得到每個(gè)turn的最大速度需要滿足三個(gè)條件, M_i = min (S_i , t_i – t_{i-1} + M_{i-1} , S_k + t_k – t_i [for all k > i ] )

            因此處理每一個(gè)turn都要查詢N個(gè)turn N*N的復(fù)雜度顯然對于大數(shù)據(jù)要TLE的

            逆向思考,如果我們反過來考慮,對于每一個(gè)之后的turn來說 如:i  如果他最大速度為 m_i

            那么 在turn i-1處,他不能超過的最大速度 m_{i-1} = min(S_i,m_i+t_i – t_{i-1});這樣成功的把后面兩個(gè)限制轉(zhuǎn)換為逆推的結(jié)果而不是向后查詢

            剩下的問題便是如果知道兩個(gè)turn之間距離,以及turn的速度最大值,如何求出之間的最大值,畫圖顯然可以得到一種算式 maxspeed = min(s1,s2) + (dist2-dist1+abs(s1-s2))/2;

            或者 maxspeed = max(s1,s2) + (dist2 – dist1 – abs(s1-s2))/2;

            注意在開頭和結(jié)尾加入虛擬的turn就可以了

             

            Code Snippet
            #define REP(i,n)  for(  int (i) = 0 ; i < (n) ; ++i)
            using namespace std;
            int L,N;
            struct node{
                int dist;
                int speed;
            };
            vector<node> vec;
            bool comp(const node& n1,const node& n2){
                return n1.dist<n2.dist;
            }
            vector<int> up,down;
            #define inf 98765433
            void solve()
            {
                //freopen("e:\\usaco\\bobsled.11.in","r",stdin);
                freopen("bobsled.in","r",stdin);
                freopen("bobsled.out","w",stdout);
                cin>>L>>N;
                vec.resize(N+2); up.resize(N+2,0); down.resize(N+2,0);
                vec[0].dist =0;vec[0].speed =1;
                vec[N+1].dist =L;vec[N+1].speed=inf;
                REP(i,N) scanf("%d %d",&vec[i+1].dist,&vec[i+1].speed);
                sort(vec.begin(),vec.end(),comp);
                down[N+1] = inf;
                for(int i=N;i>0;i--)
                    down[i] = min(vec[i].speed,vec[i+1].dist-vec[i].dist+down[i+1]);
                int maxspeed = 1;up[0]=1;
                for(int i=1;i<N+2;i++){
                    up[i] = min(down[i],up[i-1]+vec[i].dist - vec[i-1].dist);
                    maxspeed = max(maxspeed,min(up[i],up[i-1])+(vec[i].dist-vec[i-1].dist+abs(up[i]-up[i-1]))/2);
                }
                cout<<maxspeed<<endl;
            }


            int main()
            {
                solve();
                return 0;
            }

            ----------------------------------------------3個(gè)月后的修改線-----------------------------------------------------------------

            第一個(gè)復(fù)習(xí)周末 ,先看的這道題,過了這么久果然又杯具的不會(huì)了~~之前的解釋寫的有些模糊。

            首先,如果要想達(dá)到最快速度,那么只需要求得每個(gè)turn 能夠達(dá)到的最快速度即可~

            所以題目編程求每個(gè)turn能達(dá)到的最快速度了。首先得到簡單的式子,也就是上面的min{1,2,3},第一個(gè)條件決定在這個(gè)turn我們可以加速達(dá)到的最大速度,后兩個(gè)條件為了防止滑的過快,減不下來不能通過自己以及以后的turn。按這種算法,我們必須對每一個(gè)turn遍歷之后的turn,很沒有效率。后面兩個(gè)條件是為了防止在turn處滑的過快~~那么每一個(gè)m_i 只需要滿足 min(S_i,m_{i+1}+t[i+1]-t[i]);只要這樣,就可以保證雪橇可以減速以通過下一個(gè)turn。顯然最后一個(gè)turn的 m_i 就是他的s_i,這樣遞推回去就能得到一組slowdown值,然后利用前面的式子 up[i]=min{m_i[i],up[i-1]+lenth};正向推回去就可以得到每一個(gè)turn的maxspeed。至于最大speed的算法上面已經(jīng)給出了~

            ------------------希望下次可以直接做出來,不要再忘了。。。。-------------

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

            欧美va久久久噜噜噜久久| 爱做久久久久久| 国产精品女同久久久久电影院| 久久综合香蕉国产蜜臀AV| 国产亚洲精久久久久久无码| 国产激情久久久久影院老熟女| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 欧美国产成人久久精品| 精品久久久久久久久免费影院| 久久精品国产AV一区二区三区| 久久久久中文字幕| 奇米综合四色77777久久| 久久久久婷婷| 26uuu久久五月天| 国产亚洲精久久久久久无码| 亚洲精品无码久久不卡| 99久久免费国产精品| 丰满少妇高潮惨叫久久久| 偷窥少妇久久久久久久久| 久久久久国产一级毛片高清板| 99久久无色码中文字幕| 伊人久久久AV老熟妇色| 少妇人妻综合久久中文字幕| 久久激情五月丁香伊人| 日本免费久久久久久久网站| 国产亚洲色婷婷久久99精品| 亚洲综合伊人久久综合| 国产精品久久久久久久app| 久久五月精品中文字幕| 国产精品免费久久| 91久久成人免费| 久久国产精品免费| 久久婷婷五月综合97色直播| 久久久久久久国产免费看| 久久久99精品成人片中文字幕| 国产成人无码精品久久久久免费 | 久久婷婷人人澡人人爽人人爱| 亚洲国产精品成人AV无码久久综合影院| 久久91这里精品国产2020| 日日狠狠久久偷偷色综合96蜜桃| 香港aa三级久久三级老师2021国产三级精品三级在 |