• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            [USACO 09NOV] silver xoinc [dp]

            Posted on 2009-11-12 00:20 rikisand 閱讀(507) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO

            周六第一次做usaco玩,bronze的輕松切掉,然后申請promote,下午批準,話說rob 效率好高啊~ 于是繼續(xù)做silver 就遇到這個題- -!糾結(jié)了半天放棄····知道是dp 也考慮了方法就是 理不清楚;不知道是不是一天沒吃飯的緣故·····

            今天題解出來了~ 先看了大概思路 然后自己寫出來了~

            題目:

            Farmer John's cows like to play coin games so FJ has invented with
            a new two-player coin game called Xoinc for them.
            
            Initially a stack of N (5 <= N <= 2,000) coins sits on the ground;
            coin i from the top has integer value C_i (1 <= C_i <= 100,000).
            The first player starts the game by taking the top one or two coins
            (C_1 and maybe C_2) from the stack. If the first player takes just
            the top coin, the second player may take the following one or two
            coins in the next turn. If the first player takes two coins then
            the second player may take the top one, two, three or four coins
            from the stack. In each turn, the current player must take at least
            one coin and at most two times the amount of coins last taken by
            the opposing player. The game is over when there are no more coins
            to take.
            
            Afterwards, they can use the value of the coins they have taken
            from the stack to buy treats from FJ, so naturally, their purpose
            in the game is to maximize the total value of the coins they take.
            Assuming the second player plays optimally to maximize his own
            winnings, what is the highest total value that the first player can
            have when the game is over?
            
            MEMORY LIMIT: 20 MB
            
            PROBLEM NAME: xoinc
            
            INPUT FORMAT:
            
            * Line 1: A single integer: N
            
            * Lines 2..N+1: Line i+1 contains a single integer: C_i
            
            SAMPLE INPUT (file xoinc.in):
            
            5
            1
            3
            1
            7
            2
            簡單來說就是兩個人輪流取coins,每個人每次取得個數(shù)為1- 2*n;n為上一輪對方取得數(shù)目,
            求兩個人都是用最佳策略,先取得那個家伙最多能拿到多少硬幣。貌似可以算是簡單博弈論的思想
            思路:
                    coins[1···N] 從下到上 sum[1···N] 剩下 i個的和
                    找到無后效性的子問題。考慮在還剩下p個錢幣時候的情況,此時可以拿k個錢
            由于條件,k的大小受上一輪拿的個數(shù)i的限制 ,所以我們要加上一個變量i。得到
            dp[p][i]這個子問題。那么容易得到
            dp[p][i]=max(1=<k<=i*2){SuM(p to p-k+1)+SuM(p-k to 1)-dp[p-k][k]}
                        =max(1=<k<=i*2){sum[p]-dp[p-k][k]}
            按照這個可以得到一個O(N^3)的算法

            oidsolve(){
              
            for(inti=1;i<=N;i++)
            //剩下i個
                   
            for(intj=1;j<=N;j++)
            //上一人拿了j 個
                       
            for(intk=1;k<=j*2&&i-k>=0
            ;k++){
                            dp[i][j]=max(dp[i][j],sum[
            1]-sum[i+1
            ]-dp[i-k][k]);
                        }
                ret=dp[N][
            1
            ];
            }

             三重遞歸 ,最多可以過500的數(shù)據(jù)量  觀察可以得出 dp[p][j] 和 dp[p][j+1] 的計算有很多的重疊
            因為 上次拿了j+1 則可以比 dp[p][j] 多拿 2 個 

            然后,由于考慮j的范圍 應(yīng)該為 N-i+1

            這樣得到了最終代碼:

            scanf("%d",&N);
            for(int i=1;i<=N;i++)    scanf("%d",coins+i);//{fin>>coins[i]; }
            sum[0]=0;
            for(int i=1;i<=N;i++)     sum[i]=sum[i-1]+coins[N-i+1]; 
            for(int i=1;i<=N;i++)        //剩下i個
            for(int j=1;j<= N-i +1;j++){ // 上次拿了j個
            if(dp[i][j]<dp[i][j-1])dp[i][j]=dp[i][j-1];
            if(2*j-1<=i&&dp[i][j]<sum[i]-dp[i-2*j+1][2*j-1]) dp[i][j]=sum[i]-dp[i-2*j+1][2*j-1];
            if(2*j<=i&&dp[i][j]<sum[i]-dp[i-2*j][2*j]) dp[i][j]= sum[i]-dp[i-2*j][2*j];
            }
            printf("%d\n",dp[N][1]);

            很晚了 ,先寫這么多 ,有空把bronze的寫了

            3個月后注:事實證明,當時么有時間 ~以后更沒有時間 ~~~ hoho`````````~~~~~~~``````````

            久久精品国产72国产精福利| 久久久久se色偷偷亚洲精品av| 国产精品久久久久天天影视| 精品久久久久久久久中文字幕| 久久久国产乱子伦精品作者| 久久99国产精品久久99果冻传媒| 久久99精品久久久久久不卡| 亚洲国产一成久久精品国产成人综合| 国产亚洲精久久久久久无码77777| 日本人妻丰满熟妇久久久久久 | 91精品国产综合久久四虎久久无码一级 | 无码人妻久久久一区二区三区| 99久久成人国产精品免费| 欧美一级久久久久久久大| 国产一区二区三区久久| 国产精品一区二区久久精品涩爱| 99久久国产热无码精品免费| 亚洲国产成人精品女人久久久 | 人妻少妇久久中文字幕一区二区| 国产一区二区精品久久岳| 无码国内精品久久综合88| 国产高潮国产高潮久久久91 | 久久久精品免费国产四虎| 综合久久久久久中文字幕亚洲国产国产综合一区首 | 一本久久免费视频| 狠狠色伊人久久精品综合网| 东京热TOKYO综合久久精品| 精品国产99久久久久久麻豆| 久久午夜福利电影| 91精品婷婷国产综合久久| 人妻久久久一区二区三区| 国产激情久久久久久熟女老人| 狠狠综合久久综合中文88| 91精品国产色综久久 | 亚洲另类欧美综合久久图片区| 99热成人精品免费久久| 久久香蕉国产线看观看乱码| 99久久国产热无码精品免费| 久久久国产精品网站| 国产成人久久久精品二区三区| 国产精品一区二区久久|