• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            風(fēng)雨

            驀然回首 卻在燈火闌珊處
            posts - 3, comments - 2, trackbacks - 0, articles - 0
              C++博客 :: 首頁(yè) :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理

            Computing n choose k mod p

            Postby joshi13 » Tue Apr 14, 2009 4:49 am

            Hi all.

            How can we apply the modular multiplicative inverse when calculating

            (n choose k) mod p, where 'p' is a prime number.

            If you could suggest some related problems, it would be very helpful.

            Thanks in advance.


            Re: Computing n choose k mod p

            Postby mf » Tue Apr 14, 2009 10:56 am

            You could use .


            Re: Computing n choose k mod p

            Postby maxdiver » Tue Apr 14, 2009 12:03 pm

            There is another, more "mechanical", but more general, approach. It can be applied to any formula containing factorials over some modulo.

            C_n^k = n! / (k! (n-k)!)
            Let's learn how to compute n! mod p, but factorial without factors p and so on:
            n!* mod p = 1 * 2 * ... * (p-1) * _1_ * (p+1) * (p+2) * ... * (2p-1) * _2_ * (2p+1) * (2p+2) * ... * n.
            We took the usual factorial, but excluded all factors of p (1 instead of p, 2 instead of 2p, and so on).
            I name this 'strange factorial'.

            If n is not very large, we can calculate this simply, then GOTO END_SCARY_MATHS :)
            If p is not large, then GOTO BEGIN_SCARY_MATHS:
            Else - skip the rest of the post :)

            BEGIN_SCARY_MATHS:
            After taking each factor mod p, we get:
            n!* mod p = 1 * 2 * ... * (p-1) * 1 * 2 * ... * (p-1) * 2 * 1 * 2 * ... * n.
            So 'strange factorial' is really several blocks of construction:
            1 * 2 * 3 * ... * (p-1) * i
            where i is a 1-indexed index of block taken again without factors p ('strange index' :) ).
            The last block could be not full. More precisely, there will be floor(n/p) full blocks and some tail (its result we can compute easily, in O(P)).
            The result in each block is multiplication 1 * 2 * ... * (p-1), which is common to all blocks, and multiplication of all 'strange indices' i from 1 to floor(n/p).
            But multiplication of all 'strange indices' is really a 'strange factorial' again, so we can compute it recursively. Note, that in recursive calls n reduces exponentially, so this is rather fast algorithm.

            So... After so much brainfucking maths I must give a code :)
            Code: Select all
            int factmod (int n, int p) {
               long long res = 1;
               while (n > 1) {
                  long long cur = 1;
                  for (int i=2; i<p; ++i)
                     cur = (cur * i) % p;
                  res = (res * powmod (cur, n/p, p)) % p;
                  for (int i=2; i<=n%p; ++i)
                     res = (res * i) % p;
                  n /= p;
               }
               return int (res % p);
            }

            Asymptotic... There are log_p n iterations of while, inside it there O(p) multiplications, and calculation of power, that can be done in O(log n). So asymptotic is O ((log_p n) (p + log n)).
            Unfortunately I didn't check the code on any online judge, but the idea (which was explained by Andrew Stankevich) is surely right.
            END_SCARY_MATHS:

            So, we can now compute this 'strange factorial' modulo p. Because p is prime, and we've excluded all multiples of p, then the result would be different from zero. This means we can compute inverse for them, and compute C_n^k = n!* / (k!* (n-k)!*) (mod p).
            But, of course, before all this, we should check, if p was in the same power in the nominator and denominator of the fraction. If it was indeed in the same power, then we can divide by it, and we get exactly these 'strange factorials'. If the power of p in nominator was greater, then the result will obviously be 0. The last case, when power in denominator is greater than in nominator, is obviously incorrect (the fraction won't be integer).

            P.S. How to compute power of prime p in n! ? Easy formula: n/p + n/(p^2) + n/(p^3) + ...


            (轉(zhuǎn)載:http://acm.uva.es/board/viewtopic.php?f=22&t=42690&sid=25bd8f7f17abec626f2ee065fec3703b

            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問(wèn)   Chat2DB   管理


            久久SE精品一区二区| 久久人人爽人人爽人人片AV东京热| 欧美亚洲色综久久精品国产| 久久天堂AV综合合色蜜桃网| 久久久久中文字幕| 久久久久久九九99精品| 青青草原综合久久大伊人| 精品视频久久久久| 国产精品九九久久免费视频 | 亚洲国产成人精品久久久国产成人一区二区三区综 | 久久天天躁狠狠躁夜夜avapp| 精品久久人人爽天天玩人人妻| 久久精品麻豆日日躁夜夜躁| 国内精品久久久久久久涩爱 | 久久精品国产亚洲AV不卡| 品成人欧美大片久久国产欧美| 国产精品99精品久久免费| 少妇精品久久久一区二区三区| 综合久久一区二区三区 | 色欲av伊人久久大香线蕉影院| 亚洲第一永久AV网站久久精品男人的天堂AV| 久久久综合香蕉尹人综合网| 精品无码久久久久久午夜| 久久精品国产久精国产思思| 亚洲欧美一区二区三区久久| 国产 亚洲 欧美 另类 久久| 国产精品久久国产精麻豆99网站| 久久精品午夜一区二区福利| 久久国产免费直播| 国产高潮久久免费观看| 久久久久亚洲精品中文字幕| 亚洲国产精品久久66| 久久精品国产只有精品66| 久久精品国产亚洲7777| 久久毛片免费看一区二区三区| 精品久久久久久久久免费影院| 久久精品国产99国产精品亚洲| 久久精品国产亚洲AV电影 | 国产午夜免费高清久久影院| 少妇人妻88久久中文字幕| 久久精品国产福利国产秒|