• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            風雨

            驀然回首 卻在燈火闌珊處
            posts - 3, comments - 2, trackbacks - 0, articles - 0
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            [轉載] Computing n choose k mod p

            Posted on 2010-05-04 10:07 zgm 閱讀(565) 評論(0)  編輯 收藏 引用

            Computing n choose k mod p

            Postby joshi13 » Tue Apr 14, 2009 4:49 am

            Hi all.

            How can we apply the modular multiplicative inverse when calculating

            (n choose k) mod p, where 'p' is a prime number.

            If you could suggest some related problems, it would be very helpful.

            Thanks in advance.


            Re: Computing n choose k mod p

            Postby mf » Tue Apr 14, 2009 10:56 am

            You could use .


            Re: Computing n choose k mod p

            Postby maxdiver » Tue Apr 14, 2009 12:03 pm

            There is another, more "mechanical", but more general, approach. It can be applied to any formula containing factorials over some modulo.

            C_n^k = n! / (k! (n-k)!)
            Let's learn how to compute n! mod p, but factorial without factors p and so on:
            n!* mod p = 1 * 2 * ... * (p-1) * _1_ * (p+1) * (p+2) * ... * (2p-1) * _2_ * (2p+1) * (2p+2) * ... * n.
            We took the usual factorial, but excluded all factors of p (1 instead of p, 2 instead of 2p, and so on).
            I name this 'strange factorial'.

            If n is not very large, we can calculate this simply, then GOTO END_SCARY_MATHS :)
            If p is not large, then GOTO BEGIN_SCARY_MATHS:
            Else - skip the rest of the post :)

            BEGIN_SCARY_MATHS:
            After taking each factor mod p, we get:
            n!* mod p = 1 * 2 * ... * (p-1) * 1 * 2 * ... * (p-1) * 2 * 1 * 2 * ... * n.
            So 'strange factorial' is really several blocks of construction:
            1 * 2 * 3 * ... * (p-1) * i
            where i is a 1-indexed index of block taken again without factors p ('strange index' :) ).
            The last block could be not full. More precisely, there will be floor(n/p) full blocks and some tail (its result we can compute easily, in O(P)).
            The result in each block is multiplication 1 * 2 * ... * (p-1), which is common to all blocks, and multiplication of all 'strange indices' i from 1 to floor(n/p).
            But multiplication of all 'strange indices' is really a 'strange factorial' again, so we can compute it recursively. Note, that in recursive calls n reduces exponentially, so this is rather fast algorithm.

            So... After so much brainfucking maths I must give a code :)
            Code: Select all
            int factmod (int n, int p) {
               long long res = 1;
               while (n > 1) {
                  long long cur = 1;
                  for (int i=2; i<p; ++i)
                     cur = (cur * i) % p;
                  res = (res * powmod (cur, n/p, p)) % p;
                  for (int i=2; i<=n%p; ++i)
                     res = (res * i) % p;
                  n /= p;
               }
               return int (res % p);
            }

            Asymptotic... There are log_p n iterations of while, inside it there O(p) multiplications, and calculation of power, that can be done in O(log n). So asymptotic is O ((log_p n) (p + log n)).
            Unfortunately I didn't check the code on any online judge, but the idea (which was explained by Andrew Stankevich) is surely right.
            END_SCARY_MATHS:

            So, we can now compute this 'strange factorial' modulo p. Because p is prime, and we've excluded all multiples of p, then the result would be different from zero. This means we can compute inverse for them, and compute C_n^k = n!* / (k!* (n-k)!*) (mod p).
            But, of course, before all this, we should check, if p was in the same power in the nominator and denominator of the fraction. If it was indeed in the same power, then we can divide by it, and we get exactly these 'strange factorials'. If the power of p in nominator was greater, then the result will obviously be 0. The last case, when power in denominator is greater than in nominator, is obviously incorrect (the fraction won't be integer).

            P.S. How to compute power of prime p in n! ? Easy formula: n/p + n/(p^2) + n/(p^3) + ...


            (轉載:http://acm.uva.es/board/viewtopic.php?f=22&t=42690&sid=25bd8f7f17abec626f2ee065fec3703b
            久久精品这里只有精99品| 久久w5ww成w人免费| 久久影院午夜理论片无码| 99久久精品费精品国产| 久久九九久精品国产免费直播| 亚洲色大成网站WWW久久九九| 久久亚洲综合色一区二区三区| 亚洲精品久久久www| 精品精品国产自在久久高清| 久久久精品国产Sm最大网站| 99久久99这里只有免费费精品| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 九九精品99久久久香蕉| 久久精品无码一区二区三区免费| 中文字幕无码精品亚洲资源网久久| a高清免费毛片久久| 欧美日韩精品久久免费| 精品久久久无码中文字幕| 精品国产VA久久久久久久冰 | 青青草原精品99久久精品66| 久久99精品国产麻豆婷婷| 东京热TOKYO综合久久精品| 久久精品国产亚洲AV香蕉| 亚洲а∨天堂久久精品9966| 9999国产精品欧美久久久久久| 久久国语露脸国产精品电影| 亚洲国产成人精品无码久久久久久综合 | 久久男人中文字幕资源站| 久久香蕉一级毛片| 久久久精品人妻一区二区三区四 | 久久精品亚洲日本波多野结衣 | 色综合久久久久无码专区| 伊人热热久久原色播放www| 亚洲精品NV久久久久久久久久| 久久国产精品偷99| 国产999精品久久久久久| 久久99精品久久久久久水蜜桃| 国内精品久久久久影院网站| 久久国产免费直播| 色婷婷久久久SWAG精品| 伊人久久大香线蕉AV一区二区|