• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            風雨

            驀然回首 卻在燈火闌珊處
            posts - 3, comments - 2, trackbacks - 0, articles - 0
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            [轉載] Computing n choose k mod p

            Posted on 2010-05-04 10:07 zgm 閱讀(548) 評論(0)  編輯 收藏 引用

            Computing n choose k mod p

            Postby joshi13 » Tue Apr 14, 2009 4:49 am

            Hi all.

            How can we apply the modular multiplicative inverse when calculating

            (n choose k) mod p, where 'p' is a prime number.

            If you could suggest some related problems, it would be very helpful.

            Thanks in advance.


            Re: Computing n choose k mod p

            Postby mf » Tue Apr 14, 2009 10:56 am

            You could use .


            Re: Computing n choose k mod p

            Postby maxdiver » Tue Apr 14, 2009 12:03 pm

            There is another, more "mechanical", but more general, approach. It can be applied to any formula containing factorials over some modulo.

            C_n^k = n! / (k! (n-k)!)
            Let's learn how to compute n! mod p, but factorial without factors p and so on:
            n!* mod p = 1 * 2 * ... * (p-1) * _1_ * (p+1) * (p+2) * ... * (2p-1) * _2_ * (2p+1) * (2p+2) * ... * n.
            We took the usual factorial, but excluded all factors of p (1 instead of p, 2 instead of 2p, and so on).
            I name this 'strange factorial'.

            If n is not very large, we can calculate this simply, then GOTO END_SCARY_MATHS :)
            If p is not large, then GOTO BEGIN_SCARY_MATHS:
            Else - skip the rest of the post :)

            BEGIN_SCARY_MATHS:
            After taking each factor mod p, we get:
            n!* mod p = 1 * 2 * ... * (p-1) * 1 * 2 * ... * (p-1) * 2 * 1 * 2 * ... * n.
            So 'strange factorial' is really several blocks of construction:
            1 * 2 * 3 * ... * (p-1) * i
            where i is a 1-indexed index of block taken again without factors p ('strange index' :) ).
            The last block could be not full. More precisely, there will be floor(n/p) full blocks and some tail (its result we can compute easily, in O(P)).
            The result in each block is multiplication 1 * 2 * ... * (p-1), which is common to all blocks, and multiplication of all 'strange indices' i from 1 to floor(n/p).
            But multiplication of all 'strange indices' is really a 'strange factorial' again, so we can compute it recursively. Note, that in recursive calls n reduces exponentially, so this is rather fast algorithm.

            So... After so much brainfucking maths I must give a code :)
            Code: Select all
            int factmod (int n, int p) {
               long long res = 1;
               while (n > 1) {
                  long long cur = 1;
                  for (int i=2; i<p; ++i)
                     cur = (cur * i) % p;
                  res = (res * powmod (cur, n/p, p)) % p;
                  for (int i=2; i<=n%p; ++i)
                     res = (res * i) % p;
                  n /= p;
               }
               return int (res % p);
            }

            Asymptotic... There are log_p n iterations of while, inside it there O(p) multiplications, and calculation of power, that can be done in O(log n). So asymptotic is O ((log_p n) (p + log n)).
            Unfortunately I didn't check the code on any online judge, but the idea (which was explained by Andrew Stankevich) is surely right.
            END_SCARY_MATHS:

            So, we can now compute this 'strange factorial' modulo p. Because p is prime, and we've excluded all multiples of p, then the result would be different from zero. This means we can compute inverse for them, and compute C_n^k = n!* / (k!* (n-k)!*) (mod p).
            But, of course, before all this, we should check, if p was in the same power in the nominator and denominator of the fraction. If it was indeed in the same power, then we can divide by it, and we get exactly these 'strange factorials'. If the power of p in nominator was greater, then the result will obviously be 0. The last case, when power in denominator is greater than in nominator, is obviously incorrect (the fraction won't be integer).

            P.S. How to compute power of prime p in n! ? Easy formula: n/p + n/(p^2) + n/(p^3) + ...


            (轉載:http://acm.uva.es/board/viewtopic.php?f=22&t=42690&sid=25bd8f7f17abec626f2ee065fec3703b
            国产精品久久久久蜜芽| 久久久精品国产Sm最大网站| 久久精品人妻中文系列| 97精品依人久久久大香线蕉97 | 精品久久一区二区三区| 久久久亚洲欧洲日产国码aⅴ | 天堂无码久久综合东京热| 久久精品国产黑森林| 国产精品亚洲综合久久| 久久久国产乱子伦精品作者| 99精品伊人久久久大香线蕉| 久久大香萑太香蕉av| 四虎国产精品免费久久5151| 久久久这里有精品| 精品一区二区久久| 中文精品久久久久人妻不卡| 久久99精品国产麻豆蜜芽| 久久精品人成免费| 色播久久人人爽人人爽人人片AV| 久久国产精品久久久| 97精品国产97久久久久久免费| 国产精品内射久久久久欢欢| 久久午夜羞羞影院免费观看| 久久久久国产精品人妻| 精品多毛少妇人妻AV免费久久| 久久综合亚洲欧美成人| 2021最新久久久视精品爱| 蜜臀久久99精品久久久久久| 中文字幕亚洲综合久久| 久久精品国产亚洲网站| 亚洲αv久久久噜噜噜噜噜| 免费精品国产日韩热久久| 久久久噜噜噜久久| 久久久久99精品成人片三人毛片 | 久久伊人精品青青草原高清| 精品熟女少妇av免费久久| 亚洲国产精品无码久久SM| 午夜精品久久久久久99热| 色综合久久久久无码专区| 亚洲av日韩精品久久久久久a| 亚洲人成伊人成综合网久久久|