• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 42  文章 - 3  trackbacks - 0
            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            常用鏈接

            留言簿(2)

            隨筆檔案

            文章檔案

            網(wǎng)頁收藏

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜


            This note is about book .NET and COM.

            Think of XML Web services simply as components or Application Programming Interfaces (APIs) exposed on a Web site rather than a DLL residing on your own computer.

            An assembly is a self-describing logical component. Assemblies are units of deployment, units of security, units of versioning, and units of scope for the types contained within. Although an assembly is typically one executable or one DLL, it could be made up of multiple files. 

            Any assemblies with type definitions contain corresponding type information describing them. This information is called metadata (data about data). 

            Reflection
             is the process of programmatically obtaining type information. Programs can dynamically inspect (“reflect upon”) the metadata for any assemblies, dynamically instantiate objects and invoke members, and even emit metadata dynamically (a technology called Refection Emit). Reflection provides late binding facilities like COM’s IDispatch and IDispatchEx interfaces, type inspection like COM’s ITypeInfo and ITypeInfo2 interfaces, and much more.

            How Unmanaged Code Interacts with Managed Code

            Three technologies exist that enable the interaction between unmanaged and managed code:

            • Platform Invocation Services (PInvoke)

               1 static class GameSharp
               2 {
               3     /// The native methods in the DLL's unmanaged code.
               4     internal static class UnsafeNativeMethods
               5     {
               6     const string _dllLocation = "CoreDLL.dll";
               7     [DllImport(_dllLocation)]
               8     public static extern void SimulateGameDLL(int a, int b);
               9     }
              10 }

              Choosing a Calling Convention

              The calling convention of an entry point can be specified using another DllImportAttribute named parameter, called CallingConvention. The choices for this are as follows:

              • CallingConvention.Cdecl. The caller is responsible for cleaning the stack. Therefore, this calling convention is appropriate for methods that accept a variable number of parameters (like printf).

              • CallingConvention.FastCall. This is not supported by version 1.0 of the .NET Framework.

              • CallingConvention.StdCall. This is the default convention for PInvoke methods running on Windows. The callee is responsible for cleaning the stack.

              • CallingConvention.ThisCall. This is used for calling unmanaged methods defined on a class. All but the first parameter is pushed on the stack since the first parameter is the this pointer, stored in the ECX register.

              • CallingConvention.Winapi. This isn’t a real calling convention, but rather indicates to use the default calling convention for the current platform. On Windows (but not Windows CE), the default calling convention is StdCall.

              Declare always uses Winapi, and the default for DllImportAttribute is also Winapi. As you might guess, this is the calling convention used by Win32 APIs, so this setting doesn’t need to be used in this chapter’s examples.

               1 using System;
               2 using System.Runtime.InteropServices;
               3 
               4 public class LibWrap
               5 {
               6 // C# doesn't support varargs so all arguments must be explicitly defined. 
               7 // CallingConvention.Cdecl must be used since the stack is  
               8 // cleaned up by the caller. 
               9 
              10 // int printf( const char *format [, argument] )
              11 
              12 [DllImport("msvcrt.dll", CharSet=CharSet.Unicode, CallingConvention=CallingConvention.Cdecl)]
              13 public static extern int printf(String format, int i, double d); 
              14 
              15 [DllImport("msvcrt.dll", CharSet=CharSet.Unicode, CallingConvention=CallingConvention.Cdecl)]
              16 public static extern int printf(String format, int i, String s); 
              17 }
              18 
              19 public class App
              20 {
              21     public static void Main()
              22     {
              23         LibWrap.printf("\nPrint params: %i %f", 99, 99.99);
              24         LibWrap.printf("\nPrint params: %i %s", 99, "abcd");
              25     }
              26 }
            • Mixed-Mode Programming Using Managed Extensions to C++

            • COM Interoperability

                     

                  Good COM server implementation in C#

                  Building COM Objects in C#

                 Building COM Servers in .NET








            posted @ 2013-06-27 03:32 鷹擊長空 閱讀(325) | 評論 (0)編輯 收藏
            As demand of project, I need to learn this language a little bit more. Although I have written some Python script before, still there is numerous knowledge need to learn.

            eg: y = raw_input(‘Enter a number’)
            # y is a string

            list = [ 'abcd', 786 , 2.23, 'john', 70.2 ] tinylist = [123, 'john']  
            print list # Prints complete list
            print list[0] # Prints first element of the list
            print list[1:3] # Prints elements starting from 2nd till 3rd
            print list[2:] # Prints elements starting from 3rd element
            print tinylist * 2 # Prints list two times
            print list + tinylist # Prints concatenated list

            tuple = ( 'abcd', 786 , 2.23, 'john', 70.2 ) tinytuple = (123, 'john')  
            print tuple # Prints complete list
            print tuple[0] # Prints first element of the list
            print tuple[1:3] # Prints elements starting from 2nd till 3rd
            print tuple[2:] # Prints elements starting from 3rd element
            print tinytuple * 2 # Prints list two times
            print tuple + tinytuple # Prints concatenated lists

            posted @ 2012-12-20 12:41 鷹擊長空 閱讀(221) | 評論 (0)編輯 收藏

            I didn't use VS2008 for a long time, but today I need to build a project with it. It cost me several hours to solve some small issues. It seems have lots of bug. I will list them as follows:

            First of all, I cannot edit the resource file with the default program. Searched with Google, this is a bug of VS. Just replace the slash in absolute including path with double slash;

            The second issue is additional lib. In VS2010, multiply lib file names is separate by semicolon, but in VS2009 it is space;
            posted @ 2012-10-11 11:08 鷹擊長空 閱讀(254) | 評論 (0)編輯 收藏
             
            在編寫共享庫時,為保證ABI(app binary interface)兼容:
              1 盡量使用C語言 2不要在接口類使用虛函數(shù)和模板; 3 不要改變成員函數(shù)的訪問權(quán)限; 4 不要使用STL 5 不要依賴使用虛擬析構(gòu)函數(shù),最好自己實現(xiàn),顯式調(diào)用;
            6 不要在DLL里面申請內(nèi)存,DLL外釋放,DLL和APP可能不在同一個內(nèi)存堆;

            可重入(reentrant)函數(shù)可以由多于一個任務(wù)并發(fā)使用,而不必擔心數(shù)據(jù)錯誤。相反, 不可重入(non-reentrant)函數(shù)不能由超過一個任務(wù)所共享,除非能確保函數(shù)的互斥(或者使用信號量,或者在代碼的關(guān)鍵部分禁用中斷)。可重入函數(shù)可以在任意時刻被中斷,稍后再繼續(xù)運行,不會丟失數(shù)據(jù)。可重入函數(shù)要么使用本地變量,要么在使用全局變量時保護自己的數(shù)據(jù)。
            Reentrant Function:A function whose effect, when called by two or more threads,is guaranteed to be as if the threads each executed thefunction one after another in an undefined order, even ifthe actual execution is interleaved.
            Thread-Safe Function:A function that may be safely invoked concurrently by multiple threads.

            函數(shù)可重入的必要條件:
            1 不使用任何(局部)靜態(tài)變量或者全局的非常量;
            2 不返回任何局部靜態(tài)或者全局非常量指針;
            3 僅依賴調(diào)用方的參數(shù);
            4 不依賴任何單個資源的鎖;
            5 不調(diào)用任何不可重入的函數(shù);

            In classical OS, stack grows downwards. After each push operatation, the value of ebp becomes small, and vice versa.

            esp is the top of the stack.

            ebp is usually set to esp at the start of the function. Local variables are accessed by subtracting a constant offset from ebp. All x86 calling conventions define ebp as being preserved across function calls. ebp itself actually points to the previous frame's base pointer, which enables stack walking in a debugger and viewing other frames local variables to work.

            Most function prologs look something like:
            push ebp      ; Preserve current frame pointer
            mov ebp, esp  ; Create new frame pointer pointing to current stack top
            sub esp, 20   ; allocate 20 bytes worth of locals on stack. 

            Then later in the function you may have code like (presuming both local variables are 4 bytes)
            mov [ebp-4], eax    ; Store eax in first local
            mov ebx, [ebp - 8]  ; Load ebx from second local

            objdump is a program for displaying various information about object files. For instance, it can be used as a disassembler to view executable in assembly form. It is part of the GNU Binutils for fine-grained control over executable and other binary data.

            For example, to completely disassemble a binary:
            objdump -Dslx file


            posted @ 2012-07-17 22:20 鷹擊長空 閱讀(309) | 評論 (0)編輯 收藏

            How Cocoa Bindings Work (via KVC and KVO)

            Cocoa bindings can be a little confusing, especially to newcomers. Once you have an understanding of the underlying concepts, bindings aren’t too hard. In this article, I’m going to explain the concepts behind bindings from the ground up; first explaining Key-Value Coding (KVC), then Key-Value Observing (KVO), and finally explaining how Cocoa bindings are built on top of KVC and KVO.

             

            Key-Value Coding (KVC)

            The first concept you need to understand is Key-Value Coding (KVC), as KVO and bindings are built on top of it.

             

            Objects have certain "properties". For example, a Person object may have an name property and an address property. In KVC parlance, the Person object has a value for the name key, and for the address key. "Keys" are just strings, and "values" can be any type of object[1]. At it’s most fundamental level, KVC is just two methods: a method to change the value for a given key (mutator), and a method to retrieve the value for a given key (accessor). Here is an example:

             

            void ChangeName(Person* p, NSString* newName)

            {

                //using the KVC accessor (getter) method

                NSString* originalName = [p valueForKey:@"name"];

             

                //using the KVC mutator (setter) method.

                [p setValue:newName forKey:@"name"];

             

                NSLog(@"Changed %@'s name to: %@", originalName, newName);

            }

            Now let’s say the Person object has a third key: a spouse key. The value for the spouse key is another Person object. KVC allows you to do things like this:

             

            void LogMarriage(Person* p)

            {

                //just using the accessor again, same as example above

                NSString* personsName = [p valueForKey:@"name"];

             

                //this line is different, because it is using

                //a "key path" instead of a normal "key"

                NSString* spousesName = [p valueForKeyPath:@"spouse.name"];

             

                NSLog(@"%@ is happily married to %@", personsName, spousesName);

            }

            Cocoa makes a distinction between "keys" and "key paths". A "key" allows you to get a value on an object. A "key path" allows you to chain multiple keys together, separated by dots. For example, this…

             

            [p valueForKeyPath:@"spouse.name"];

            is exactly the same as this…

             

            [[p valueForKey:@"spouse"] valueForKey:@"name"];

            That’s all you need to know about KVC for now.

             

            Let’s move on to KVO.

             

            Key-Value Observing (KVO)

            Key-Value Observing (KVO) is built on top of KVC. It allows you to observe (i.e. watch) a KVC key path on an object to see when the value changes. For example, let’s write some code that watches to see if a person’s address changes. There are three methods of interest in the following code:

             

            watchPersonForChangeOfAddress: begins the observing

            observeValueForKeyPath:ofObject:change:context: is called every time there is a change in the value of the observed key path

            dealloc stops the observing

            static NSString* const KVO_CONTEXT_ADDRESS_CHANGED = @"KVO_CONTEXT_ADDRESS_CHANGED"

             

            @implementation PersonWatcher

             

            -(void) watchPersonForChangeOfAddress:(Person*)p;

            {

                //this begins the observing

                [p addObserver:self

                    forKeyPath:@"address"

                       options:0

                       context:KVO_CONTEXT_ADDRESS_CHANGED];

             

                //keep a record of all the people being observed,

                //because we need to stop observing them in dealloc

                [m_observedPeople addObject:p];

            }

             

            //whenever an observed key path changes, this method will be called

            - (void)observeValueForKeyPath:(NSString *)keyPath

                                  ofObject:(id)object

                                    change:(NSDictionary *)change

                                   context:(void *)context;

            {

                //use the context to make sure this is a change in the address,

                //because we may also be observing other things

                if(context == KVO_CONTEXT_ADDRESS_CHANGED){

                    NSString* name = [object valueForKey:@"name"];

                    NSString* address = [object valueForKey:@"address"];

                    NSLog(@"%@ has a new address: %@", name, address);

                }       

            }

             

            -(void) dealloc;

            {

                //must stop observing everything before this object is

                //deallocated, otherwise it will cause crashes

                for(Person* p in m_observedPeople){

                    [p removeObserver:self forKeyPath:@"address"];

                }

                [m_observedPeople release]; m_observedPeople = nil;

                [super dealloc];

            }

             

            -(id) init;

            {

                if(self = [super init]){

                    m_observedPeople = [NSMutableArray new];

                }

                return self;

            }

             

            @end

            This is all that KVO does. It allows you to observe a key path on an object to get notified whenever the value changes.

             

            Cocoa Bindings

            Now that you understand the concepts behind KVC and KVO, Cocoa bindings won’t be too mysterious.

             

            Cocoa bindings allow you to synchronise two key paths[2] so they have the same value. When one key path is updated, so is the other one.

             

            For example, let’s say you have a Person object and an NSTextField to edit the person’s address. We know that every Person object has an address key, and thanks to the Cocoa Bindings Reference, we also know that every NSTextField object has a value key that works with bindings. What we want is for those two key paths to be synchronised (i.e. bound). This means that if the user types in the NSTextField, it automatically updates the address on the Person object. Also, if we programmatically change the the address of the Person object, we want it to automatically appear in the NSTextField. This can be achieved like so:

             

            void BindTextFieldToPersonsAddress(NSTextField* tf, Person* p)

            {

                //This synchronises/binds these two together:

                //The `value` key on the object `tf`

                //The `address` key on the object `p`

                [tf bind:@"value" toObject:p withKeyPath:@"address" options:nil];

            }

            What happens under the hood is that the NSTextField starts observing the address key on the Person object via KVO. If the address changes on the Person object, the NSTextField gets notified of this change, and it will update itself with the new value. In this situation, the NSTextField does something similar to this:

             

            - (void)observeValueForKeyPath:(NSString *)keyPath

                                  ofObject:(id)object

                                    change:(NSDictionary *)change

                                   context:(void *)context;

            {

                if(context == KVO_CONTEXT_VALUE_BINDING_CHANGED){

                    [self setStringValue:[object valueForKeyPath:keyPath]];

                }       

            }

            When the user starts typing into the NSTextField, the NSTextField uses KVC to update the Person object. In this situation, the NSTextField does something similar to this:

             

            - (void)insertText:(id)aString;

            {

                NSString* newValue = [[self stringValue] stringByAppendingString:aString];

                [self setStringValue:newValue];

             

                //if "value" is bound, then propagate the change to the bound object

                if([self infoForBinding:@"value"]){

                    id boundObj = ...; //omitted for brevity

                    NSString* boundKeyPath = ...; //omitted for brevity

                    [boundObj setValue:newValue forKeyPath:boundKeyPath];

                }

            }

            For a more complete look at how views propagate changes back to the bound object, see my article: Implementing Your Own Cocoa Bindings.

             

            Conclusion

            That’s that basics of how KVC, KVO and bindings work. The views use KVC to update the model, and they use KVO to watch for changes in the model. I have left out quite a bit of detail in order to keep the article short and simple, but hopefully it has given you a firm grasp of the concepts and principles.

             

            Footnotes

            [1] KVC values can also be primitives such as BOOL or int, because the KVC accessor and mutator methods will perform auto-boxing. For example, a BOOL value will be auto-boxed into an NSNumber*.

            [2] When I say that bindings synchronise two key paths, that’s not technically correct. It actually synchronises a "binding" and a key path. A "binding" is a string just like a key path but it’s not guaranteed to be KVC compatible, although it can be. Notice that the example code uses @"address" as a key path but never uses @"value" as a key path. This is because @"value" is a binding, and it might not be a valid key path.

             

            posted @ 2012-07-16 16:27 鷹擊長空 閱讀(292) | 評論 (0)編輯 收藏
            Create a new local repository:
            prompt> mkdir /path/to/repo:
            prompt> cd /path/to/repo
            prompt> git init
            Initialized empty Git repository in /path/to/repo/.git/
            prompt>
            ... create file(s) for first commit ...
            prompt> git add .
            prompt> git commit -m 'initial import'
            Created initial commit bdebe5c: initial import.

            1 files changed, 1 insertions(+), 0 deletions(-)
            Note that the commit action only commits to your local repository.

            Change one of my github repo name in two steps:

            Firstly, cd to your local git directory, and find out what remote name(s) refer to that URL

            $ git remote -v origin  git@github.com:someuser/someproject.git 

            Then, set the new URL

            $ git remote set-url origin git@github.com:someuser/newprojectname.git 

            or in older versions of git, you might need

            $ git remote rm origin $ git remote add origin git@github.com:someuser/newprojectname.git 

            (origin is the most common remote name, but it might be called something else.)

            But if there's lots of people who are working on your project, they will all need to do the above steps, and maybe you don't even know how to contact them all to tell them. That's what #1 is about.

            Further reading:

            Footnotes:

            1 The exact format of your URL depends on which protocol you are using, e.g.

            push your local repository into remote repository:
            prompt>git push origin master
            To amend the last wrong commit:

            git commit --amend -m "New commit message"

             

            If the commit you want to fix isn’t the most recent one:

            1. git rebase --interactive $parent_of_flawed_commit

              If you want to fix several flawed commits, pass the parent of the oldest one of them.

            2. An editor will come up, with a list of all commits since the one you gave.

              1. Change pick to reword (or on old versions of Git, to edit) in front of any commits you want to fix.
              2. Once you save, git will replay the listed commits. 

            3. Git will drop back you into your editor for every commit you said you want to reword, and into the shell for every commit you wanted to edit. If you’re in the shell:

              1. Change the commit in any way you like.
              2. git commit --amend
              3. git rebase --continue

            Most of this sequence will be explained to you by the output of the various commands as you go. It’s very easy, you don’t need to memorise it – just remember that git rebase --interactive lets you correct commits no matter how long ago they were.

            Today, when I try to push some code to the remote, it told me the there is a permission issue, I finally fixed it by created a new key, add it to my git account and local account. Here is the process of adding to local


            $ git push -u origin master
            Permission denied (publickey).
            fatal: The remote end hung up unexpectedly

            $ ssh -vT git@github.com
            OpenSSH_4.6p1, OpenSSL 0.9.8e 23 Feb 2007
            debug1: Connecting to github.com [207.97.227.239] port 22.
            debug1: Connection established.
            debug1: No more authentication methods to try.
            Permission denied (publickey).

            $  ssh-add -l
            Could not open a connection to your authentication agent.

            $ eval `ssh-agent`
            Agent pid 4968

            If you did not have a key, generate one according this 
            https://help.github.com/articles/generating-ssh-keys

            then add the key
            $  ssh-add /c/Users/li/.ssh/key
            Identity added: /c/Users/li/.ssh/key

            $ ssh -vT git@github.com
            OpenSSH_4.6p1, OpenSSL 0.9.8e 23 Feb 2007
            debug1: Connecting to github.com [207.97.227.239] port 22.
            debug1: Connection established.
            debug1: identity file /c/Users/li/.ssh/identity type -1

            Hi ***! You've successfully authenticated, but GitHub does not provide shell access.
            debug1: channel 0: free: client-session, nchannels 1
            debug1: Transferred: stdin 0, stdout 0, stderr 0 bytes in 0.3 seconds
            debug1: Bytes per second: stdin 0.0, stdout 0.0, stderr 0.0
            debug1: Exit status 1


            $ git push -u origin master
            Counting objects: 46, done.
            Delta compression using up to 4 threads.
            Compressing objects: 100% (42/42), done.
            Writing objects: 100% (46/46), 21.33 KiB, done.
            Total 46 (delta 1), reused 0 (delta 0)

            Clone your repository

            Create a new repository in a new directory via the following commands.

             

            # Switch to home
            cd ~
            # Make new directory
            mkdir repo02
            
            # Switch to new directory
            cd ~/repo02
            # Clone
            git clone ../remote-repository.git . 

             

            posted @ 2012-07-09 22:04 鷹擊長空 閱讀(447) | 評論 (0)編輯 收藏
            Chapter 4
            Some people find the “90/10” rule helpful: 90 percent of the running time of most programs is spent in only
            10 percent of the code (Hennessy and Patterson, 2002)

            Use a vector instead of an array whenever possible.
            Vectors provide fast (constant time) element insertion and deletion at the end of the vector, but slow
            (linear time) insertion and deletion anywhere else. Insertion and deletion are slow because the operation
            must move all the elements “down” or “up” by one to make room for the new element or to fill the
            space left by the deleted element. Like arrays, vectors provide fast (constant time) access to any of their
            elements.
            You should use a vector in your programs when you need fast access to the elements, but do not plan to
            add or remove elements often. A good rule of thumb is to use a vector whenever you would have used
            an array.

            The name deque is an abbreviation for a double-ended queue. A deque is partway between a vector and a
            list, but closer to a vector. Like a vector, it provides quick (constant time) element access. Like a list, it
            provides fast (amortized constant time) insertion and deletion at both ends of the sequence. However,
            unlike a list, it provides slow (linear time) insertion and deletion in the middle of the sequence.
            You should use a deque instead of a vector when you need to insert or remove elements from either end
            of the sequence but still need fast access time to all elements. However, this requirement does not apply
            to many programming problems; in most cases a vector or queue should suffice.


            A set in STL is a collection of elements. Although the mathematical definition of a set implies an
            unordered collection, the STL set stores the elements in an ordered fashion so that it can provide reasonably
            fast lookup, insertion, and deletion.
            Use a set instead of a vector or list if you want equal performance for insertion, deletion,and lookup.
            Note that a set does not allow duplication of elements. That is, each element in the set must be unique. If
            you want to store duplicate elements, you must use a multiset.


            Chapter8
            Initializer lists allow initialization of data members at the time of their creation.
            An initializer list allows you to provide initial values for data members as they are created, which is more efficient than assigning values to them later.
            However, several data types must be initialized in an initializer list. The following table summarizes them:a、 const data members; b、Reference data members C、Object data members or Superclasses without default constructors
            Initializer lists initialize data members in their declared order in the class definition,not their order in the list.

            Chapter9
            Pass objects by const reference instead of by value.
            The default semantics for passing arguments to functions in C++ is pass-by-value. That means that the function or method receives a copy of the variable, not the variable itself. Thus, whenever you pass an object to a function or method the compiler calls the copy constructor of the new object to initialize it. The copy constructor is also called whenever you return an object from a function or method.
            posted @ 2012-07-09 19:41 鷹擊長空 閱讀(415) | 評論 (0)編輯 收藏

            print all permutations of a given string. A permutation, also called an “arrangement number” or “order,” is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with S itself. A string of length n has n! permutation.

            # include <stdio.h>
              
            /* Function to swap values at two pointers */
            void swap (char *x, char *y)
            {
                char temp;
                temp = *x;
                *x = *y;
                *y = temp;
            }
               
            /* Function to print permutations of string
               This function takes three parameters:
               1. String
               2. Starting index of the string
               3. Ending index of the string. */
            void permute(char *a, int i, int n) 
            {
               int j; 
               if (i == n)
                 printf("%s\n", a);
               else
               {
                    for (j = i; j <= n; j++)
                   {
                      swap((a+i), (a+j));
                      permute(a, i+1, n);
                      swap((a+i), (a+j)); //backtrack
                   }
               }
              
            /* Driver program to test above functions */
            int main()
            {
               char a[] = "ABC";  
               permute(a, 0, 2);
               getchar();
               return 0;
            }

            2. find the sum of contiguous subarray within a one-dimensional array of numbers which has the largest sum.
            #include<stdio.h>
            int maxSubArraySum(int a[], int size)
            {
               int max_so_far = 0, max_ending_here = 0;
               int i;
               for(i = 0; i < size; i++)
               {
                 max_ending_here = max_ending_here + a[i];
                 if(max_ending_here < 0)
                    max_ending_here = 0;
                 if(max_so_far < max_ending_here)
                    max_so_far = max_ending_here;
                }
                return max_so_far;
             
            /*Driver program to test maxSubArraySum*/
            int main()
            {
               int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
               int max_sum = maxSubArraySum(a, 8);
               printf("Maximum contiguous sum is %d\n", max_sum);
               getchar();
               return 0;
            }

            posted @ 2012-07-05 17:51 鷹擊長空 閱讀(315) | 評論 (0)編輯 收藏
            From http://www.newsmth.net/nForum/#!article/Apple/136327
            窗口
            ----
              
            其實 Mac OS X 的老用戶們都該熟悉了,和 Windows 不一樣,這個系統(tǒng)里“窗口”并非
            最重要的概念,一個程序的邏輯結(jié)構(gòu)是:  
              
            +---------------------------------------------+
            | Application                                 |
            | +-------------------------+  +-----------+  |
            | | Window                  |  | Menu      |  |
            | |   +----------------+    |  +-----------+  |
            | |   | Control        |    |                 |
            | |   | +---------+    |    |                 |
            | |   | | Control |    |    |                 |
            | |   | +---------+    |    |                 |
            | |   +----------------+    |                 |
            | +-------------------------+                 |
            +---------------------------------------------+
              
            也就是說,菜單是獨立于窗口的存在,有窗口和控件的區(qū)別。這和 Windows 中一切的
            本質(zhì)都是窗口有很大的區(qū)別。  
              
            雖然 Mac OS X 中區(qū)分 Window, Control 和 Menu 這幾種概念,但并不代表其設(shè)計上
            沒有考慮到它們之間的一致性。在 Carbon 中,這些實體都是用 FooRef 的形式來表示
            的,Ref 就有指針的意思,比如你創(chuàng)建了一個窗口之后,就會得到對應的  
            WindowRef,其實這就是一個用來操縱這個窗口的指針,而你創(chuàng)建控件之后,對應的
            是 ControlRef,創(chuàng)建菜單對應的自然是 MenuRef 了,還是很好理解的吧。  
              
            我們這里先只談窗口。很顯然,要創(chuàng)建窗口,還得有些其他的屬性,讓我們看看  
            Carbon 的 CreateNewWindow 這個函數(shù)的原形是怎么要求的:  
              
            OSStatus CreateNewWindow (
                WindowClass windowClass,
                WindowAttributes attributes,
                const Rect *contentBounds,
                WindowRef *outWindow
            );
              
            WindowClass 是一個常量,我們最常見的一種是 kDocumentWindowClass (也是下面
            打算要用的),還有 kDrawerWindowClass,這也很好理解:那種可以伸縮的 Drawer  
            嘛,kAlertWindowClass 呢?就是我們常見的提示框了。  
              
            WindowAttributes 則是針對具體 WindowClass 再作更仔細的屬性定制了,這也是一個  
            32 位的無符號整數(shù),但和 WindowClass 只能 n 選 1 不同,你可以把屬性用位或 (|) 組
            合起來使用。反正一時也記不住那么多,就先設(shè)置為  
            kWindowStandardDocumentAttributes | kWindowStandardHandlerAttribute 好了。前
            者保證我們的窗口具有其他標準的文檔窗口相同的特性,而后者給窗口加上系統(tǒng)提供的
            標準 event handler,以自動處理一般的 event。下面是用于設(shè)置的代碼:  
              
            WindowAttributes windowAttrs;
              
            windowAttrs = kWindowStandardDocumentAttributes |
                           kWindowStandardHandlerAttribute;
              
            直到這里,“event”都還是一個很模糊的概念,雖然我們前面多次提到了它,但為了避
            免過多的講理論,我拖到現(xiàn)在才來介紹它。  
              
            Event (事件) 其實是 Carbon 編程的基礎(chǔ)。鼠標點擊、鍵盤輸入、菜單命令都是以  
            event 的形式發(fā)出的。窗口需要重繪、移動和放縮時,也會告知你的應用程序一個  
            event。當你的程序切換到前端或者后端時,你也會收到 event 告知你這個信息。
            Carbon 程序的工作就是通過回應 event 來實現(xiàn)與用戶和系統(tǒng)交互。  
              
            Carbon 的 event 處理是基于回調(diào) (callback) 機制的。你可以定義針對不同 event 類型
            的 event handler,然后在 Carbon Event Manager 中注冊 (Install) 之。然后每當  
            event 發(fā)生時,Carbon Event Manager 就會調(diào)用你注冊的 handler 函數(shù)。每個 event  
            handler 都必須與一個具體的 event target 對象關(guān)聯(lián)起來,比如 target 是菜單、窗口或
            整個程序。  
              
            應用程序包含窗口和菜單,窗口包含控件,控件還能進一步包含控件。一旦 event 出
            現(xiàn),首先得到通知的是最里層的 target,比如點擊 button 的 event 首先發(fā)到 button 控
            件上。如果最里面的 target 沒有相關(guān)的 handler,就把 event 傳播到更外層的包含它的  
            target 上。Carbon 給窗口和應用程序的 event target 提供了標準的 handler。標準  
            handler 可以負責處理類似窗口針對鼠標的操作,比如拖拽,伸縮等等。這樣一來,你
            就只需要關(guān)心自己的程序里針對拖拽或伸縮的特殊反映,而不比費神于那些所有程序都
            通用的部分了。  
              
            當然,如果你愿意,也可以覆蓋標準的 handler,比如有人可能會寫個針對拉伸窗口的  
            handler,給窗口的伸縮增加音效。我們這里沒那么復雜,用標準的就好啦。  
              
            第三個參數(shù)就更好理解了,是一個指向 Rect 這個結(jié)構(gòu)體的指針,說明了窗口在屏幕坐
            標系 [1] 中的位置和大小。這個東西其實還是 QuickDraw 中的概念,所以在程序中我
            們也調(diào)用 QuickDraw 的 API 來完成設(shè)置:  
              
            #define kWindowTop      100
            #define kWindowLeft     50
            #define kWindowRight    800
            #define kWindowBottom   600
              
            Rect contentRect;
              
            SetRect(&contentRect, kWindowLeft, kWindowTop,
                     kWindowRight, kWindowBottom);
              
            設(shè)置的正是這個矩形四個點的坐標。  
              
            [1]: 注意屏幕坐標系中左上角是 (0, 0)。
              
            最后一個參數(shù)是一個輸出,也就是我們最終創(chuàng)建出來的那個新窗口的指針了。所以,我
            們一般是這樣創(chuàng)建窗口的:  
              
            WindowRef theWindow;
            CreateNewWindow(kDocumentWindowClass, windowAttrs,  
                             &contentRect, &theWindow);
              
            等等,窗口是創(chuàng)建好了,存在 theWindow 指針里,可窗口的標題呢?我們這樣設(shè)置:  
              
            SetWindowTitleWithCFString(theWindow, CFSTR("Hello Carbon"));
              
            注意這里的 CFSTR 是一個宏,用于把 C 的 const char * 字符串轉(zhuǎn)換為 Core  
            Foundation 定義的 CFStringRef 字符串,對于 CFString 的詳細介紹可以看 Strings  
            Programming Guide for Core Foundation [2],不過其實現(xiàn)在我們知道它包括的是一個
            數(shù)組和數(shù)組的長度,數(shù)組的元素都是 Unicode 字符 (UniChar),就行了,具體的轉(zhuǎn)換細
            節(jié)暫時不必考慮。
              
            [2]: http://developer.apple.com/documentation/CoreFoundation/Conceptual/
            CFStrings/CFStrings.html
              
            一切完畢之后,我們就可以顯示這個窗口了:  
              
            ShowWindow(theWindow);
              
            下面把完整的代碼列出 (你也可以看附件里面的):  
              
            /* hello.c: testing Carbon basics */
              
            #include <Carbon/Carbon.h>
              
            #define kWindowTop      100
            #define kWindowLeft     50
            #define kWindowRight    800
            #define kWindowBottom   600
              
            int main(int argc, char *argv[])
            {
                 WindowRef         theWindow;
                 WindowAttributes  windowAttrs;
                 Rect              contentRect;
                  
                 windowAttrs = kWindowStandardDocumentAttributes |
                               kWindowStandardHandlerAttribute;
              
                 SetRect(&contentRect, kWindowLeft,  kWindowTop,
                         kWindowRight, kWindowBottom);
              
                 CreateNewWindow(kDocumentWindowClass, windowAttrs,
                                 &contentRect, &theWindow);
              
                 SetWindowTitleWithCFString(theWindow,  
                                            CFSTR("Hello Carbon"));
                 ShowWindow(theWindow);
                 RunApplicationEventLoop();
                 return 0;
            }
              
            這一節(jié)的內(nèi)容,呃,還是超出了我的預計,你要是有興趣不妨再看看 Carbon Event  
            Manager Programming Guide,event 還是一個比較 tricky 的概念,而我們要到后面
            用到的時候才會深談。下一節(jié)講菜單的創(chuàng)建。  
            posted @ 2012-07-04 10:39 鷹擊長空 閱讀(867) | 評論 (1)編輯 收藏

            The original post is
            http://igoro.com/archive/efficient-auto-complete-with-a-ternary-search-tree/

            Over the past couple of years, auto-complete has popped up all over the web. Facebook, YouTube, Google, Bing, MSDN, LinkedIn and lots of other websites all try to complete your phrase as soon as you start typing.

            Auto-complete definitely makes for a nice user experience, but it can be a challenge to implement efficiently. In many cases, an efficient implementation requires the use of interesting algorithms and data structures. In this blog post, I will describe one simple data structure that can be used to implement auto-complete: a ternary search tree.

            Trie: simple but space-inefficient

            Before discussing ternary search trees, let’s take a look at a simple data structure that supports a fast auto-complete lookup but needs too much memory: a trie. A trie is a tree-like data structure in which each node contains an array of pointers, one pointer for each character in the alphabet. Starting at the root node, we can trace a word by following pointers corresponding to the letters in the target word.

            Each node could be implemented like this in C#:

            class TrieNode
            {
            public const int ALPHABET_SIZE = 26;
            public TrieNode[] m_pointers = new TrieNode[ALPHABET_SIZE];
            public bool m_endsString = false;
            }

            Here is a trie that stores words AB, ABBA, ABCD, and BCD. Nodes that terminate words are marked yellow:

             

            gif_1

             

            Implementing auto complete using a trie is easy. We simply trace pointers to get to a node that represents the string the user entered. By exploring the trie from that node down, we can enumerate all strings that complete user’s input.

            But, a trie has a major problem that you can see in the diagram above. The diagram only fits on the page because the trie only supports four letters {A,B,C,D}. If we needed to support all 26 English letters, each node would have to store 26 pointers. And, if we need to support international characters, punctuation, or distinguish between lowercase and uppercase characters, the memory usage grows becomes untenable.

            Our problem has to do with the memory taken up by all the null pointers stored in the node arrays. We could consider using a different data structure in each node, such as a hash map. However, managing thousands and thousands of hash maps is generally not a good idea, so let’s take a look at a better solution.

            Ternary search tree to the rescue

            A ternary tree is a data structure that solves the memory problem of tries in a more clever way. To avoid the memory occupied by unnecessary pointers, each trie node is represented as a tree-within-a-tree rather than as an array. Each non-null pointer in the trie node gets its own node in a ternary search tree.

            For example, the trie from the example above would be represented in the following way as a ternary search tree:

            image

            The ternary search tree contains three types of arrows. First, there are arrows that correspond to arrows in the corresponding trie, shown as dashed down-arrows. Traversing a down-arrow corresponds to “matching” the character from which the arrow starts. The left- and right- arrow are traversed when the current character does not match the desired character at the current position. We take the left-arrow if the character we are looking for is alphabetically before the character in the current node, and the right-arrow in the opposite case.

            For example, green arrows show how we’d confirm that the ternary tree contains string ABBA:

             image

            And this is how we’d find that the ternary string does not contain string ABD:

            image 

            Ternary search tree on a server

            On the web, a significant chunk of the auto-complete work has to be done by the server. Often, the set of possible completions is large, so it is usually not a good idea to download all of it to the client. Instead, the ternary tree is stored on the server, and the client will send prefix queries to the server.

            The client will send a query for words starting with “bin” to the server:

              image

            And the server responds with a list of possible words:

            image 

            Implementation

            Here is a simple ternary search tree implementation in C#:

            public class TernaryTree
            {
            private Node m_root = null;
            private void Add(string s, int pos, ref Node node)
            {
            if (node == null) { node = new Node(s[pos], false); }
            if (s[pos] < node.m_char) { Add(s, pos, ref node.m_left); }
            else if (s[pos] > node.m_char) { Add(s, pos, ref node.m_right); }
            else
            {
            if (pos + 1 == s.Length) { node.m_wordEnd = true; }
            else { Add(s, pos + 1, ref node.m_center); }
            }
            }
            public void Add(string s)
            {
            if (s == null || s == "") throw new ArgumentException();
            Add(s, 0, ref m_root);
            }
            public bool Contains(string s)
            {
            if (s == null || s == "") throw new ArgumentException();
            int pos = 0;
            Node node = m_root;
            while (node != null)
            {
            int cmp = s[pos] - node.m_char;
            if (s[pos] < node.m_char) { node = node.m_left; }
            else if (s[pos] > node.m_char) { node = node.m_right; }
            else
            {
            if (++pos == s.Length) return node.m_wordEnd;
            node = node.m_center;
            }
            }
            return false;
            }
            }

            And here is the Node class:

            class Node
            {
            internal char m_char;
            internal Node m_left, m_center, m_right;
            internal bool m_wordEnd;
            public Node(char ch, bool wordEnd)
            {
            m_char = ch;
            m_wordEnd = wordEnd;
            }
            }

            Remarks

            For best performance, strings should be inserted into the ternary tree in a random order. In particular, do not insert strings in the alphabetical order. Each mini-tree that corresponds to a single trie node would degenerate into a linked list, significantly increasing the cost of lookups. Of course, more complex self-balancing ternary trees can be implemented as well.

            And, don’t use a fancier data structure than you have to. If you only have a relatively small set of candidate words (say on the order of hundreds) a brute-force search should be fast enough.

            Further reading

            Another article on tries is available on DDJ (careful, their implementation assumes that no word is a prefix of another):

            http://www.ddj.com/windows/184410528

            If you like this article, also check out these posts on my blog:


            posted @ 2012-06-25 23:26 鷹擊長空 閱讀(462) | 評論 (0)編輯 收藏
            僅列出標題  下一頁
            亚洲国产二区三区久久| 无码国内精品久久人妻蜜桃| 97精品伊人久久久大香线蕉 | 国产亚洲成人久久| a级毛片无码兔费真人久久| 久久久久久无码国产精品中文字幕| 久久久久综合国产欧美一区二区 | 伊人色综合久久天天人手人婷 | 思思久久好好热精品国产| 免费精品久久天干天干| 中文字幕亚洲综合久久2| 亚洲欧洲久久久精品| 国产精品久久久久无码av | 无码人妻少妇久久中文字幕| 一本一本久久aa综合精品| 伊人久久综在合线亚洲2019| 亚洲色大成网站www久久九 | 97久久精品无码一区二区| 亚洲中文字幕伊人久久无码 | 久久精品国产69国产精品亚洲| 色综合久久久久综合99| 精品久久一区二区三区| 久久精品国产亚洲AV不卡| 国产精品熟女福利久久AV| 99久久成人国产精品免费| 99久久国产宗和精品1上映| 欧美性大战久久久久久| 精品国产青草久久久久福利| 韩国免费A级毛片久久| 久久综合狠狠综合久久综合88| 欧美色综合久久久久久| 国产免费久久久久久无码| 91精品国产色综久久| 99久久精品影院老鸭窝| 99国产精品久久| 精品一区二区久久| 九九99精品久久久久久| 国产精品免费看久久久| 国产美女久久精品香蕉69| 久久久婷婷五月亚洲97号色| 久久久久亚洲精品天堂|