C/C+語言struct深層探索
出處:PConline
1. struct的巨大作用
面對一個人的大型C/C++程序時,只看其對struct的使用情況我們就可以對其編寫者的編程經驗進行評估。因為一個大型的C/C++程序,勢必要涉及一些(甚至大量)進行數據組合的結構體,這些結構體可以將原本意義屬于一個整體的數據組合在一起。從某種程度上來說,會不會用struct,怎樣用struct是區別一個開發人員是否具備豐富開發經歷的標志。
在網絡協議、通信控制、嵌入式系統的C/C++編程中,我們經常要傳送的不是簡單的字節流(char型數組),而是多種數據組合起來的一個整體,其表現形式是一個結構體。
經驗不足的開發人員往往將所有需要傳送的內容依順序保存在char型數組中,通過指針偏移的方法傳送網絡報文等信息。這樣做編程復雜,易出錯,而且一旦控制方式及通信協議有所變化,程序就要進行非常細致的修改。
一個有經驗的開發者則靈活運用結構體,舉一個例子,假設網絡或控制協議中需要傳送三種報文,其格式分別為packetA、packetB、packetC:
struct structA
{
int a;
char b;
};
struct structB
{
char a;
short b;
};
struct structC
{
int a;
char b;
float c;
}
優秀的程序設計者這樣設計傳送的報文:
struct CommuPacket
{
int iPacketType; //報文類型標志
union //每次傳送的是三種報文中的一種,使用union
{
? struct structA packetA;
? struct structB packetB;
? struct structC packetC;
}
};
在進行報文傳送時,直接傳送struct CommuPacket一個整體。
假設發送函數的原形如下:
// pSendData:發送字節流的首地址,iLen:要發送的長度
Send(char * pSendData, unsigned int? iLen);
發送方可以直接進行如下調用發送struct CommuPacket的一個實例sendCommuPacket:
Send( (char *)&sendCommuPacket , sizeof(CommuPacket) );
假設接收函數的原形如下:
// pRecvData:發送字節流的首地址,iLen:要接收的長度
//返回值:實際接收到的字節數
unsigned int Recv(char * pRecvData, unsigned int? iLen);
接收方可以直接進行如下調用將接收到的數據保存在struct CommuPacket的一個實例recvCommuPacket中:
Recv( (char *)&recvCommuPacket , sizeof(CommuPacket) );
接著判斷報文類型進行相應處理:
switch(recvCommuPacket. iPacketType)
{
??? case PACKET_A:
??? …??? //A類報文處理
??? break;
??? case PACKET_B:
??? … ? //B類報文處理
??? break;
??? case PACKET_C:
??? …?? //C類報文處理
??? break;
}
以上程序中最值得注意的是
Send( (char *)&sendCommuPacket , sizeof(CommuPacket) );
Recv( (char *)&recvCommuPacket , sizeof(CommuPacket) );
中的強制類型轉換:(char *)&sendCommuPacket、(char *)&recvCommuPacket,先取地址,再轉化為char型指針,這樣就可以直接利用處理字節流的函數。
利用這種強制類型轉化,我們還可以方便程序的編寫,例如要對sendCommuPacket所處內存初始化為0,可以這樣調用標準庫函數memset():
memset((char *)&sendCommuPacket,0, sizeof(CommuPacket));
2. struct的成員對齊
Intel、微軟等公司曾經出過一道類似的面試題:
1. #include <iostream.h>
2. #pragma pack(8)
3. struct example1
4. {
5. short a;
6. long b;
7. };
8. struct example2
9. {
10. char c;
11. example1 struct1;
12. short e;???
13. };
14. #pragma pack()
15. int main(int argc, char* argv[])
16. {
17. example2 struct2;
18. cout << sizeof(example1) << endl;
19. cout << sizeof(example2) << endl;
20. cout << (unsigned int)(&struct2.struct1) - (unsigned int)(&struct2) << endl;
21. return 0;
22. }
問程序的輸入結果是什么?
答案是:
8
16
4
不明白?還是不明白?下面一一道來:
2.1 自然對界
struct是一種復合數據類型,其構成元素既可以是基本數據類型(如int、long、float等)的變量,也可以是一些復合數據類型(如array、struct、union等)的數據單元。對于結構體,編譯器會自動進行成員變量的對齊,以提高運算效率。缺省情況下,編譯器為結構體的每個成員按其自然對界(natural alignment)條件分配空間。各個成員按照它們被聲明的順序在內存中順序存儲,第一個成員的地址和整個結構的地址相同。
自然對界(natural alignment)即默認對齊方式,是指按結構體的成員中size最大的成員對齊。
例如:
struct naturalalign
{
char a;
short b;
char c;
};
在上述結構體中,size最大的是short,其長度為2字節,因而結構體中的char成員a、c都以2為單位對齊,sizeof(naturalalign)的結果等于6;
如果改為:
struct naturalalign
{
char a;
int b;
char c;
};
其結果顯然為12。
2.2指定對界
一般地,可以通過下面的方法來改變缺省的對界條件:
· 使用偽指令#pragma pack (n),編譯器將按照n個字節對齊;
· 使用偽指令#pragma pack (),取消自定義字節對齊方式。
注意:如果#pragma pack (n)中指定的n大于結構體中最大成員的size,則其不起作用,結構體仍然按照size最大的成員進行對界。
例如:
#pragma pack (n)
struct naturalalign
{
char a;
int b;
char c;
};
#pragma pack ()
當n為4、8、16時,其對齊方式均一樣,sizeof(naturalalign)的結果都等于12。而當n為2時,其發揮了作用,使得sizeof(naturalalign)的結果為8。
在VC++ 6.0編譯器中,我們可以指定其對界方式,其操作方式為依次選擇projetct > setting > C/C++菜單,在struct member alignment中指定你要的對界方式。
另外,通過__attribute((aligned (n)))也可以讓所作用的結構體成員對齊在n字節邊界上,但是它較少被使用,因而不作詳細講解。
2.3 面試題的解答
至此,我們可以對Intel、微軟的面試題進行全面的解答。
程序中第2行#pragma pack (8)雖然指定了對界為8,但是由于struct example1中的成員最大size為4(long變量size為4),故struct example1仍然按4字節對界,struct example1的size為8,即第18行的輸出結果;
struct example2中包含了struct example1,其本身包含的簡單數據成員的最大size為2(short變量e),但是因為其包含了struct example1,而struct example1中的最大成員size為4,struct example2也應以4對界,#pragma pack (8)中指定的對界對struct example2也不起作用,故19行的輸出結果為16;
由于struct example2中的成員以4為單位對界,故其char變量c后應補充3個空,其后才是成員struct1的內存空間,20行的輸出結果為4。