三維凸包的求解如果有四點共面,那么就比較繁瑣了。
增量法,每次添加一個點,然后更新凸包。
關于增量法的圖示看這里:
http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html
現(xiàn)在的主要問題就是,一直所有面的法向量,如何更新凸包。
法向量點乘一個向量,可以得到這個向量在法向量上的偏移,如果這個偏移是正的,說明這個向量相關的點在面的上方,負的是下方,所以只要找到一條邊關聯(lián)的兩個面的點積是一正一負即可。
注意這里的所有面都是由三個點組成,且是有序的,每個邊只被記錄兩次,一次順時針,一次逆時針。
這里不能使用int,數(shù)值太大會越界。
?1?
?2?const?int?N?=?1024;
?3?struct?F?{
?4?????int?v[4];
?5?????F(){}
?6?????F(int?a,int?b,int?c){?v[0]?=?a,?v[1]?=?b,?v[2]?=?c,?v[3]?=?v[0];}
?7?};
?8?
?9?struct?point_t?{
10?????double?x,?y,?z;
11?????point_t?(){}
12?????point_t?(double?a,?double?b,?double?c){x?=?a,?y?=?b,?z?=?c;}
13?};
14?point_t?operator?+(point_t?a,?point_t?b)?{?return?point_t?(a.x?+?b.x,?a.y?+?b.y,?a.z?+?b.z);}
15?point_t?operator?-(point_t?a,?point_t?b)?{?return?point_t?(a.x?-?b.x,?a.y?-?b.y,?a.z?-?b.z);}
16?
17?double?dot_mul(point_t?a,?point_t?b)?{?return?a.x?*?b.x?+?a.y?*?b.y?+?a.z?*?b.z;}
18?point_t?cross_mul(point_t?a,point_t?b)
19?{
20?????return?point_t?(a.y*b.z?-?b.y*a.z?,
21?????????????????????a.z*b.x?-?b.z*a.x?,
22?????????????????????a.x*b.y?-?b.x*a.y);
23?}
24?
25?double?area(point_t?a,?point_t?b)
26?{
27???point_t?v?=?cross_mul(a,?b);
28???return?sqrt(0.0?+?v.x?*?v.x?+?v.y?*?v.y?+?v.z?*?v.z)?/?2;
29?}
30?
31?point_t?p[N];
32?int?vis[N][N],?n;
33?
34?int?main()
35?{
36???int?i,?j,?k;
37???scanf("%d",?&n);
38???for?(i?=?0;i?<?n;i++)?{
39???????scanf("%lf?%lf?%lf",?&p[i].x,?&p[i].y,?&p[i].z);
40???}
41???vector<F>?cur;
42???cur.pb(F(0,?1,?2)),?cur.pb(F(2,?1,?0));
43???for?(i?=?3;i?<?n;i++)?{
44???????vector<F>?next;
45???????for?(j?=?0;j?<?cur.size();j++)?{
46???????????F?f?=?cur[j];
47???????????point_t?v?=?cross_mul(p[f.v[1]]?-?p[f.v[0]],
48?????????????????????????????????p[f.v[2]]?-?p[f.v[1]]);
49???????????int?val?=?dot_mul(v,?p[i]?-?p[f.v[1]])?<?0???-1?:?1;
50???????????if?(val?<?0)?{
51???????????????next.pb(f);
52???????????}
53???????????for?(k?=?0;k?<?3;k++)?{
54???????????????if?(vis[f.v[k+1]][f.v[k]]?==?0)?{
55???????????????????vis[f.v[k]][f.v[k+1]]?=?val;
56???????????????}else?{ //http://www.shnenglu.com/schindlerlee
57???????????????????if?(vis[f.v[k+1]][f.v[k]]?!=?val)?{
58???????????????????????if?(val?>?0)?{
59???????????????????????????next.pb(F(f.v[k],?f.v[k+1],?i));
60???????????????????????}else?{
61???????????????????????????next.pb(F(f.v[k+1],?f.v[k],?i));
62???????????????????????}
63???????????????????}
64???????????????????vis[f.v[k+1]][f.v[k]]?=?0;
65???????????????}
66???????????}
67???????}
68???????cur?=?next;
69???}
70???double?ans?=?0;
71???for?(i?=?0;i?<?cur.size();i++)?{
72???????F?f?=?cur[i];
73???????ans?+=?area(p[f.v[0]]?-?p[f.v[1]],?p[f.v[2]]?-?p[f.v[1]]);
74???}
75???printf("%.3f\n",?ans);
76???return?0;
77?}