• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2005年12月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 218086
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            具體推導看書<<數值分析>>
            code:

            #include <iostream>
            using namespace std;

            const int MAXN = 100;

            int n;
            double x[MAXN], y[MAXN]; //下標從0..n
            double alph[MAXN], beta[MAXN], a[MAXN], b[MAXN];
            double h[MAXN];
            double m[MAXN]; //各點的一階導數;

            inline 
            double sqr(double pa) {
                
            return pa * pa;
            }


            double sunc(double p, int i) {
                
            return (1 + 2 * (p - x[i]) / (x[i + 1- x[i])) * sqr((p - x[i + 1]) / (x[i + 1- x[i])) * y[i]
                        
            + (1 + 2 * (p - x[i + 1]) / (x[i] - x[i + 1])) * sqr((p - x[i]) / (x[i + 1- x[i])) * y[i + 1]
                        
            + (p - x[i]) * sqr((p - x[i + 1]) / (x[i] - x[i + 1])) * m[i]
                        
            + (p - x[i + 1]) * sqr((p - x[i]) / (x[i + 1- x[i])) * m[i + 1];
            }


            int main() {
                
            int i, j;
                
            double xx;
                freopen(
            "threeInsert.in""r", stdin);
                scanf(
            "%d"&n);
                
            for (i = 0; i <= n; i++) scanf("%lf%lf"&x[i], &y[i]);
                
            // scanf("%lf%lf", &m[0], &m[n]);
                for (i = 0; i <= n - 1; i++) h[i] = x[i + 1- x[i];
                
            //第一種邊界條件
                
            //alph[0] = 0; alph[n] = 1; beta[0] = 2 * m[0]; beta[n] = 2 * m[n];
                
            //第二種邊界條件
                alph[0= 1; alph[n] = 0; beta[0= 3 * (y[1- y[0]) / h[0]; beta[n] = 3 * (y[n] - y[n - 1/ h[n - 1]);
                
            for (i = 1; i <= n - 1; i++{
                    alph[i] 
            = h[i - 1/ (h[i - 1+ h[i]);
                    beta[i] 
            = 3 * ((1 - alph[i]) * (y[i] - y[i - 1]) / h[i - 1+ alph[i] * (y[i + 1- y[i]) / h[i]);
                }

                a[
            0= - alph[0/ 2; b[0= beta[0/ 2;
                
            for (i = 1; i <= n; i++{
                    a[i] 
            = - alph[i] / (2 + (1 - alph[i]) * a[i - 1]);
                    b[i] 
            = (beta[i] - (1 - alph[i]) * b[i - 1]) / (2 + (1 - alph[i]) * a[i - 1]);
                }

                m[n 
            + 1= 0;
                
            for (i = n; i >= 0; i--{
                    m[i] 
            = a[i] * m[i + 1+ b[i];
                }

                scanf(
            "%lf"&xx);
                
            for (i = 0; i < n; i++{
                    
            if (xx >= x[i] && xx <= x[i + 1]) break;
                }

                printf(
            "%lf\n", sunc(xx, i));
                
            return 0;
            }
             
            posted @ 2007-10-20 13:07 豪 閱讀(3564) | 評論 (4)編輯 收藏
            Sailboat

            Problem H: Sailboat

            In the sailboat race, the contestant is requested to along with the prearrange path. Sailing ship's power comes from wind power and contestant's manpower. The wind power can completely used.

            In a competition, the contestants are requested to along with a 1/4 circles with radius R, the sailboat will goto east from south. During this process, the wind direction is straight from west to the east with constant speed and power.

            In order to maintain the travel direction, the athlete must adjust the sail to the vertical angle from movement direction in any time.

            If the speed of sailboat is proportional to the power at movement direction, the proportional factor is k. Supposes the wind power is f, the athlete manpower is h, please given the time of sailboat from the beginning to the end.

            Input

            The first line of each case consists of 4 double number, that is radius of path: R, wind power: f,athlete manpower: h and proportional factor:k. In order to avoid the floating point error, you needn't output the answer directly. The next line is a integer n, the following n lines gives a double value which is candidate answer.

            Output

            For each candidate of each case, Only "Yes" or "No" should be printed. Output "Yes" if the relative error to your answer is less than 3%, otherwise "No". For example, if the model answer is 100, and the candidate is 98 or 102, you should output "Yes". Output one blank line between neighboring case

            Sample Input

            1.0 2.0 1.0 1.0
            2
            0.35
            0.76
            

            Sample Output

            No
            Yes
            

            Problem Source: provided by skywind

            #include <iostream>
            #include 
            <cmath>
            using namespace std;

            const int MAXN = 100;
            const double PI = acos(-1.0);

            double R, F, H, K, ans;
            int n, cas;

            double func(double x) {
                
            return R / K / (H + F * cos(x));
            }


            double romberg(double a, double b, double EPS = 1e-6{
                
            double t[MAXN][MAXN] = {0}, tmp;
                
            int i, j, k, k2, m, m4;
                t[
            0][0= (func(a) + func(b)) * (b - a) / 2;
                k 
            = 1; k2 = 1;
                
            while (1{
                    tmp  
            = 0;
                    
            for (i = 1; i <= k2; i++{
                        tmp 
            += func(a + (2 * i - 1* (b - a) / (2 * k2));
                    }

                    t[
            0][k] = (t[0][k - 1+ tmp * (b - a) / k2) / 2;
                    
            for (m = 1, m4=4; m <= k; m++, m4 *= 4{
                        t[m][k 
            - m] = (m4 * t[m - 1][k - m + 1- t[m - 1][k - m]) / (m4 - 1);
                    }

                    
            if (fabs(t[k][0- t[k - 1][0]) < EPS) break;
                    k
            ++; k2 *= 2;
                }

                
            return t[k][0];
            }


            void solve() {
                
            double tmp;
                scanf(
            "%lf"&tmp);
                
            if (fabs(tmp - ans) / ans < 0.03) printf("Yes\n");
                
            else printf("No\n");
            }


            int main() {
                freopen(
            "2457.in""r", stdin);
                
            while (scanf("%lf%lf%lf%lf%d"&R, &F, &H, &K, &n) != EOF) {
                    
            if (cas) printf("\n");
                    
            else cas++;
                    ans 
            = romberg(0, PI/2);
                    
            while (n--{
                        solve();
                    }

                }

                
            return 0;
            }
            posted @ 2007-10-20 01:02 豪 閱讀(692) | 評論 (0)編輯 收藏

            Easy Problem

            Time limit:1000 ms   Memory limit:65536 KB
            Total Submit:1755 (462 users)   Accepted Submit:366 (332 users)

            Description

            In this problem, you're to calculate the distance between a point P(xp, yp, zp) and a segment (x1, y1, z1) − (x2, y2, z2), in a 3D space, i.e. the minimal distance from P to any point Q(xq, yq, zq) on the segment (a segment is part of a line).

            Input

            The first line contains a single integer T (1 ≤ T ≤ 1000), the number of test cases. Each test case is a single line containing 9 integers xp, yp, zp, x1, y1, z1, x2, y2, z2. These integers are all in [-1000,1000].

            Output

            For each test case, print the case number and the minimal distance, to two decimal places.

            Sample Input

            3
            0 0 0 0 1 0 1 1 0
            1 0 0 1 0 1 1 1 0
            -1 -1 -1 0 1 0 -1 0 -1

            Sample Output

            Case 1: 1.00
            Case 2: 0.71
            Case 3: 1.00

            Problem Source

            The 32nd ACM-ICPC Beijing First Round Internet Contest

            其實和二分差不多,劃個函數曲線出來,分三段,比劃一下就很容易理解了:)

            #include <iostream>
            #include 
            <cmath>
            using namespace std;

            double dist(double l[], double r[]) {
                
            return sqrt((l[0]-r[0])*(l[0]-r[0])+(l[1]-r[1])*(l[1]-r[1])+(l[2]-r[2])*(l[2]-r[2]));
            }


            int main() {
               
            // freopen("1024.in", "r", stdin);
                int n, cas=0;
                
            double l[3], r[3], p[3], p1[3], p2[3], d1, d2;
                scanf(
            "%d"&n);
                
            while (n--{
                    scanf(
            "%lf%lf%lf%lf%lf%lf%lf%lf%lf"&p[0], &p[1], &p[2], &l[0], &l[1], &l[2], &r[0], &r[1], &r[2]);
                    
            while (dist(l, r) > 1e-4{
                        p1[
            0= (l[0+ r[0]) / 2;
                        p1[
            1= (l[1+ r[1]) / 2;
                        p1[
            2= (l[2+ r[2]) / 2;
                        p2[
            0= (r[0+ p1[0]) / 2;
                        p2[
            1= (r[1+ p1[1]) / 2;
                        p2[
            2= (r[2+ p1[2]) / 2;
                        d1 
            = dist(p1, p); d2 = dist(p2, p);
                        
            if (d2 >= d1) {
                            r[
            0= p2[0]; r[1= p2[1]; r[2= p2[2];
                        }
             else {
                            l[
            0= p1[0]; l[1= p1[1]; l[2= p1[2];
                        }

                    }

                    printf(
            "Case %d: %.2lf\n"++cas, dist(p,l));
                }

            }

            posted @ 2007-10-18 11:00 豪 閱讀(1206) | 評論 (0)編輯 收藏
            昨晚去圖書館看了《計算機圖形學——OpenGL實現》關于Bresenham算法的另一種推導方式。
            Bresenham最精妙之處在于通過方程變換,然后得到迭代方程,從而消除了浮點運算。

            下面簡單寫寫自己對中點法推導的理解:

            記:W = bx - ax, H = by - ay
                     所以 (ax, ay)和(bx, by)的理想直線為:
                     -W*(y-ay) + H*(x-ax) = 0

            記:函數 f(x, y) = -2*W*(y-ay) + 2*H*(x-ax);
                     f(x,y)有如下性質:
                     f(x, y) < 0, 那么(x, y)在直線上方
                     f(x, y) > 0, 那么(x, y)在直線下方

            現考慮 點L(Px+1, Py), 點U(Px+1, Py+1), 則LU中點M(Px+1, Py+1/2) 有:
                     如果f(Mx, My) < 0, 則M在理想直線上方, 所以選擇L
                     如果f(Mx, My) > 0, 則M在理想直線下方, 所以選擇U
            則:
                     f(Mx,My) = -2*w*(Py+1/2-ay) + 2*H*(Px+1-ax)
            當 x從Px+1移動到Px+2時, 考慮f變化M'和M'':
                     M':在前一步沒有增加y, M' = (Px+2, Py+1/2)
                     M'':在前一步增加了y, M' = (Px+2, Py+3/2)
            對于 M':
                     f(M'x, M'y) = -2*w*(Py+1/2-ay) + 2*H*(Px+2-ax) = f(Mx, My) + 2 * H
            對于 M'':
                     f(M''x, M''y) = -2*w*(Py+3/2-ay) + 2*H*(Px+2-ax) = f(Mx, My) - 2 * (W-H)
            所以
                     對于下一個“測試量”都有一個常數增量:前一次沒有增加y,增量為2*H,如果增加了y,則增量為-2*(W-H)

            對于初始條件:x = ax, y = ay
                     M = (ax+1, ay+1/2);
                     f(Mx, My) = -2*W*(ay+1/2-ay) + 2*H(ax+1-ax) = 2*H-W

            Code:
            #include <stdlib.h>
            #include 
            <math.h>
            #include 
            <GL/glut.h>

            void myInit() {
                glClearColor(
            1.01.01.00.0);
                glColor3f(
            0.00.00.0);
                
            //glPointSize(2.0);
                glMatrixMode(GL_PROJECTION);
                glLoadIdentity();
                gluOrtho2D(
            0.0640.00.0480.0);
            }


            void setPixel(int x, int y) {
                glBegin(GL_POINTS);
                glVertex2i(x, y);
                glEnd();

            }


            void lineBres(int xs, int ys, int xe, int ye) {
                
            int W = xe - xs, H = ye - ys, f = 2 * H - W, tH = 2 * H, tHW = 2 * (H - W);
                
            int x, y;
                
            if (xs > xe) {
                    x 
            = xe;
                    y 
            = ye;
                    xe 
            = xs;
                }
             else {
                    x 
            = xs;
                    y 
            = ys;            
                }

                
            while (x <= xe) {
                    setPixel(x, y);
                    x
            ++;
                    
            if (f<0{
                        f 
            += tH;
                    }
             else {
                        y
            ++;
                        f 
            += tHW;
                    }

                }

            }


            void myDisplay() {
                glClear(GL_COLOR_BUFFER_BIT);
                lineBres(
            2010300180);
                glFlush();
            }


            int main(int argc, char **argv) {
                glutInit(
            &argc, argv);
                glutInitDisplayMode(GLUT_SINGLE
            |GLUT_RGB);
                glutInitWindowSize(
            640480);
                glutInitWindowPosition (
            100150);
                glutCreateWindow(
            "Bresenham畫線");
                glutDisplayFunc(myDisplay);
                myInit();
                glutMainLoop();
                
            return 0;
            }

                     
            posted @ 2007-10-11 11:57 豪 閱讀(1151) | 評論 (0)編輯 收藏
            擴展了一點,有興趣的可以去看看,MFC去,sigh~
            http://www.shnenglu.com/qywyh/articles/32740.html
            posted @ 2007-09-23 21:34 豪 閱讀(1417) | 評論 (0)編輯 收藏
            僅列出標題
            共18頁: 1 2 3 4 5 6 7 8 9 Last 
            精品久久久久久99人妻| 国产精品久久久久久搜索| 久久免费视频网站| 91精品国产综合久久四虎久久无码一级| 精品久久久久久久久午夜福利| 久久青青草原国产精品免费| 国产成人久久精品二区三区| 亚洲日本久久久午夜精品| 亚洲午夜久久久久久久久久| 久久综合综合久久狠狠狠97色88 | 亚洲日韩欧美一区久久久久我| 久久婷婷五月综合国产尤物app| 日韩AV无码久久一区二区| 999久久久国产精品| 久久婷婷色综合一区二区| 国产精品久久久久久久久免费| 老司机午夜网站国内精品久久久久久久久 | 亚洲精品高清国产一线久久| 青青草原综合久久大伊人| 中文字幕无码精品亚洲资源网久久 | 久久精品国产色蜜蜜麻豆| 久久国产乱子精品免费女| 久久99热这里只有精品国产| 久久se这里只有精品| 久久国产精品无码HDAV | 99久久人妻无码精品系列| 99久久精品免费| 少妇久久久久久被弄到高潮| 国产精品成人99久久久久| 日本亚洲色大成网站WWW久久 | 香港aa三级久久三级老师2021国产三级精品三级在 | 久久精品aⅴ无码中文字字幕重口| 性做久久久久久久久| 国产精品日韩欧美久久综合| 久久国产免费观看精品3| 日产精品99久久久久久| 久久九九久精品国产免费直播| 日本亚洲色大成网站WWW久久| 三级片免费观看久久| 无码国内精品久久人妻麻豆按摩| 久久久久亚洲av毛片大|