• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2010年11月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 216559
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            PKU 3093 Margaritas on the River Walk
                    先對輸入的數組排序,然后類似于01對a[i]做決策,核心代碼加了注釋:
                     for (i=1; i<=n; i++) {
                             for (j=1; j<=maxsum; j++) {
                                    if (j >= sum[i]) d[i][j] = 1; //j比sum[i]大,肯定這時候d[i][j]=1;
                                    else {
                                            d[i][j] = d[i-1][j];//不考慮a[i]
                                            if (j-a[i]>=0) {//考慮a[i]
                                                     if (d[i-1][j-a[i]] > 0) d[i][j] += d[i-1][j-a[i]];//把a[i]加進以前的選擇里面
                                                     else d[i][j]++;//a[i]單獨作為一個選擇(這里需要先對a[i]排序,消除后效性)
                                           }
                                    }
                             }
                     }

            PKU 1037 A decorative fence
                    先dp算出以i為起點的序列的個數,再組合數學
                    td[n][i]和tu[n][i]分別表示個數為n,以i開始的上升和下降的序列個數
                    易知:
                    td[n][1] = 0;
                    td[n][i] = sigma(tu[n-1][j], j從1..i-1)  = td[n][i-1] + tu[n-1][i-1] ;
                    tu[n][i]  = td[n][n+i-1];

            PKU 2677 Tour
                    雙調歐幾里德旅行商問題(明顯階段dp)
                    動態規劃方程 :d[i+1][i] = mint(d[i+1][i], d[i][j]+g[j][i+1]); 
                                                  d[i+1][j] = mint(d[i+1][j], d[i][j]+g[i][i+1]);
                                                   0<=j<i   

            PKU 2288 Islands and Bridges
                    集合DP
                    狀態表示: d[i][j][k] (i為13為二進制表示點的狀態, j為當前節點, k為到達j的前驅節點)

            posted on 2007-04-20 18:10 閱讀(2119) 評論(5)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 對一些DP題目的小結 2007-04-22 08:56 byron
            豪大牛,問一下,這是一些題目嗎????  回復  更多評論
              
            # re: 對一些DP題目的小結 2007-04-24 00:52 
            @byron
            是pku上的題目,我菜菜啊。。。  回復  更多評論
              
            # re: 對一些DP題目的小結 2007-04-26 18:59 oyjpart
            呵呵 就聊上了啊 :)  回復  更多評論
              
            # re: 對一些DP題目的小結 2007-06-30 22:55 姜雨生
            Margaritas on the River Walk
            Time Limit:1000MS Memory Limit:65536K
            Total Submit:309 Accepted:132

            Description


            One of the more popular activities in San Antonio is to enjoy margaritas in the park along the river know as the River Walk. Margaritas may be purchased at many establishments along the River Walk from fancy hotels to Joe’s Taco and Margarita stand. (The problem is not to find out how Joe got a liquor license. That involves Texas politics and thus is much too difficult for an ACM contest problem.) The prices of the margaritas vary depending on the amount and quality of the ingredients and the ambience of the establishment. You have allocated a certain amount of money to sampling different margaritas.

            Given the price of a single margarita (including applicable taxes and gratuities) at each of the various establishments and the amount allocated to sampling the margaritas, find out how many different maximal combinations, choosing at most one margarita from each establishment, you can purchase. A valid combination must have a total price no more than the allocated amount and the unused amount (allocated amount – total price) must be less than the price of any establishment that was not selected. (Otherwise you could add that establishment to the combination.)

            For example, suppose you have $25 to spend and the prices (whole dollar amounts) are:

            Vendor A B C D H J
            Price 8 9 8 7 16 5

            Then possible combinations (with their prices) are:

            ABC(25), ABD(24), ABJ(22), ACD(23), ACJ(21), ADJ( 20), AH(24), BCD(24), BCJ(22), BDJ(21), BH(25), CDJ(20), CH(24), DH(23) and HJ(21).

            Thus the total number of combinations is 15.


            Input


            The input begins with a line containing an integer value specifying the number of datasets that follow, N (1 ≤ N ≤ 1000). Each dataset starts with a line containing two integer values V and D representing the number of vendors (1 ≤ V ≤ 30) and the dollar amount to spend (1 ≤ D ≤ 1000) respectively. The two values will be separated by one or more spaces. The remainder of each dataset consists of one or more lines, each containing one or more integer values representing the cost of a margarita for each vendor. There will be a total of V cost values specified. The cost of a margarita is always at least one (1). Input values will be chosen so the result will fit in a 32 bit unsigned integer.


            Output


            For each problem instance, the output will be a single line containing the dataset number, followed by a single space and then the number of combinations for that problem instance.


            Sample Input


            2
            6 25
            8 9 8 7 16 5
            30 250
            1 2 3 4 5 6 7 8 9 10 11
            12 13 14 15 16 17 18 19 20
            21 22 23 24 25 26 27 28 29 30

            Sample Output


            1 15
            2 16509438

            Hint


            Note: Some solution methods for this problem may be exponential in the number of vendors. For these methods, the time limit may be exceeded on problem instances with a large number of vendors such as the second example below.


            Source
            Greater New York 2006
              回復  更多評論
              
            # re: 對一些DP題目的小結 2007-06-30 22:59 姜雨生
            應該可以更加優化  回復  更多評論
              
            久久久国产乱子伦精品作者 | 久久国产精品免费一区| 91精品观看91久久久久久 | 伊人精品久久久久7777| 久久久亚洲欧洲日产国码是AV| 国内精品久久久久久久久电影网| 九九精品99久久久香蕉| 久久99精品久久久久久齐齐| 久久婷婷色综合一区二区| 国产欧美久久一区二区| 伊人久久大香线蕉AV一区二区| 国产精品一久久香蕉国产线看观看| 久久久久18| 91久久福利国产成人精品| 久久人人爽人人爽人人片av麻烦 | 久久久久久av无码免费看大片| 久久久久久亚洲精品成人| 亚洲伊人久久成综合人影院 | 国产一区二区久久久| 免费国产99久久久香蕉| 久久强奷乱码老熟女网站| 开心久久婷婷综合中文字幕| 国内精品久久久久久99蜜桃| 欧美一区二区久久精品| 精品久久久久久无码人妻热| 精品久久久久久无码专区| 亚洲精品乱码久久久久久自慰 | A级毛片无码久久精品免费| 久久综合久久鬼色| 久久九九久精品国产免费直播| 欧美精品一区二区精品久久| 久久99精品久久只有精品| 一本一本久久aa综合精品| 久久伊人五月丁香狠狠色| 伊色综合久久之综合久久| 久久精品成人免费观看97| 国产精品日韩欧美久久综合| 777久久精品一区二区三区无码| 91精品无码久久久久久五月天| 一级做a爰片久久毛片人呢| 国产精品狼人久久久久影院|