• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217801
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            PKU 3093 Margaritas on the River Walk
                    先對輸入的數(shù)組排序,然后類似于01對a[i]做決策,核心代碼加了注釋:
                     for (i=1; i<=n; i++) {
                             for (j=1; j<=maxsum; j++) {
                                    if (j >= sum[i]) d[i][j] = 1; //j比sum[i]大,肯定這時候d[i][j]=1;
                                    else {
                                            d[i][j] = d[i-1][j];//不考慮a[i]
                                            if (j-a[i]>=0) {//考慮a[i]
                                                     if (d[i-1][j-a[i]] > 0) d[i][j] += d[i-1][j-a[i]];//把a[i]加進以前的選擇里面
                                                     else d[i][j]++;//a[i]單獨作為一個選擇(這里需要先對a[i]排序,消除后效性)
                                           }
                                    }
                             }
                     }

            PKU 1037 A decorative fence
                    先dp算出以i為起點的序列的個數(shù),再組合數(shù)學(xué)
                    td[n][i]和tu[n][i]分別表示個數(shù)為n,以i開始的上升和下降的序列個數(shù)
                    易知:
                    td[n][1] = 0;
                    td[n][i] = sigma(tu[n-1][j], j從1..i-1)  = td[n][i-1] + tu[n-1][i-1] ;
                    tu[n][i]  = td[n][n+i-1];

            PKU 2677 Tour
                    雙調(diào)歐幾里德旅行商問題(明顯階段dp)
                    動態(tài)規(guī)劃方程 :d[i+1][i] = mint(d[i+1][i], d[i][j]+g[j][i+1]); 
                                                  d[i+1][j] = mint(d[i+1][j], d[i][j]+g[i][i+1]);
                                                   0<=j<i   

            PKU 2288 Islands and Bridges
                    集合DP
                    狀態(tài)表示: d[i][j][k] (i為13為二進制表示點的狀態(tài), j為當(dāng)前節(jié)點, k為到達j的前驅(qū)節(jié)點)

            posted on 2007-04-20 18:10 閱讀(2127) 評論(5)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 對一些DP題目的小結(jié) 2007-04-22 08:56 byron
            豪大牛,問一下,這是一些題目嗎????  回復(fù)  更多評論
              
            # re: 對一些DP題目的小結(jié) 2007-04-24 00:52 
            @byron
            是pku上的題目,我菜菜啊。。。  回復(fù)  更多評論
              
            # re: 對一些DP題目的小結(jié) 2007-04-26 18:59 oyjpart
            呵呵 就聊上了啊 :)  回復(fù)  更多評論
              
            # re: 對一些DP題目的小結(jié) 2007-06-30 22:55 姜雨生
            Margaritas on the River Walk
            Time Limit:1000MS Memory Limit:65536K
            Total Submit:309 Accepted:132

            Description


            One of the more popular activities in San Antonio is to enjoy margaritas in the park along the river know as the River Walk. Margaritas may be purchased at many establishments along the River Walk from fancy hotels to Joe’s Taco and Margarita stand. (The problem is not to find out how Joe got a liquor license. That involves Texas politics and thus is much too difficult for an ACM contest problem.) The prices of the margaritas vary depending on the amount and quality of the ingredients and the ambience of the establishment. You have allocated a certain amount of money to sampling different margaritas.

            Given the price of a single margarita (including applicable taxes and gratuities) at each of the various establishments and the amount allocated to sampling the margaritas, find out how many different maximal combinations, choosing at most one margarita from each establishment, you can purchase. A valid combination must have a total price no more than the allocated amount and the unused amount (allocated amount – total price) must be less than the price of any establishment that was not selected. (Otherwise you could add that establishment to the combination.)

            For example, suppose you have $25 to spend and the prices (whole dollar amounts) are:

            Vendor A B C D H J
            Price 8 9 8 7 16 5

            Then possible combinations (with their prices) are:

            ABC(25), ABD(24), ABJ(22), ACD(23), ACJ(21), ADJ( 20), AH(24), BCD(24), BCJ(22), BDJ(21), BH(25), CDJ(20), CH(24), DH(23) and HJ(21).

            Thus the total number of combinations is 15.


            Input


            The input begins with a line containing an integer value specifying the number of datasets that follow, N (1 ≤ N ≤ 1000). Each dataset starts with a line containing two integer values V and D representing the number of vendors (1 ≤ V ≤ 30) and the dollar amount to spend (1 ≤ D ≤ 1000) respectively. The two values will be separated by one or more spaces. The remainder of each dataset consists of one or more lines, each containing one or more integer values representing the cost of a margarita for each vendor. There will be a total of V cost values specified. The cost of a margarita is always at least one (1). Input values will be chosen so the result will fit in a 32 bit unsigned integer.


            Output


            For each problem instance, the output will be a single line containing the dataset number, followed by a single space and then the number of combinations for that problem instance.


            Sample Input


            2
            6 25
            8 9 8 7 16 5
            30 250
            1 2 3 4 5 6 7 8 9 10 11
            12 13 14 15 16 17 18 19 20
            21 22 23 24 25 26 27 28 29 30

            Sample Output


            1 15
            2 16509438

            Hint


            Note: Some solution methods for this problem may be exponential in the number of vendors. For these methods, the time limit may be exceeded on problem instances with a large number of vendors such as the second example below.


            Source
            Greater New York 2006
              回復(fù)  更多評論
              
            # re: 對一些DP題目的小結(jié) 2007-06-30 22:59 姜雨生
            應(yīng)該可以更加優(yōu)化  回復(fù)  更多評論
              
            久久精品夜色噜噜亚洲A∨ | 手机看片久久高清国产日韩| 中文字幕亚洲综合久久| 久久久久久免费一区二区三区| 久久伊人精品青青草原高清| 久久亚洲精品无码播放| 无码伊人66久久大杳蕉网站谷歌| 91精品国产9l久久久久| 久久这里都是精品| 久久精品毛片免费观看| 久久丝袜精品中文字幕| 久久国产色AV免费观看| 四虎久久影院| 国产精品久久网| 亚洲精品无码专区久久久| 国内精品久久久久久久久| 久久这里只有精品18| 青青青青久久精品国产h久久精品五福影院1421 | 久久精品久久久久观看99水蜜桃 | 久久久久国产精品嫩草影院| 老色鬼久久亚洲AV综合| 日韩亚洲国产综合久久久| 亚洲国产精品久久久久久| 国内精品久久久久影院优| 亚洲综合熟女久久久30p| 无码任你躁久久久久久久| 91精品国产高清久久久久久91| 少妇内射兰兰久久| 人妻无码αv中文字幕久久琪琪布| 日日狠狠久久偷偷色综合0| 欧美激情精品久久久久久久| 国产毛片久久久久久国产毛片 | 久久人妻AV中文字幕| 日韩精品无码久久一区二区三| 91精品免费久久久久久久久| 亚洲国产二区三区久久| 久久成人永久免费播放| 久久人人爽人人爽人人片AV麻豆| 久久精品无码一区二区日韩AV| 久久国产美女免费观看精品| 久久久久亚洲精品中文字幕|