• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2006年9月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 216403
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            USE?并查集和線段樹

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include?<iostream>
            using?namespace?std;
            const?int?MAXN?=?200001;

            class?UFset
            {
            public:
            ????
            int?parent[MAXN];
            ????UFset();
            ????
            int?Find(int);
            ????
            void?Union(int,?int);
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            -1,?sizeof(parent));
            }


            int?UFset::Find(int?x)
            {
            ????
            if?(parent[x]?<?0)
            ????????
            return?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            =?Find(parent[x]);
            ????????
            return?parent[x];
            ????}
            //?壓縮路徑
            }


            void?UFset::Union(int?x,?int?y)
            {
            ????
            int?pX?=?Find(x);
            ????
            int?pY?=?Find(y);
            ????
            int?tmp;
            ????
            if?(pX?!=?pY)
            ????
            {
            ????????tmp?
            =?parent[pX]?+?parent[pY];?//?加權合并
            ????????if?(parent[pX]?>?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            =?pY;
            ????????????parent[pY]?
            =?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            =?pX;
            ????????????parent[pX]?
            =?tmp;
            ????????}

            ????}

            }


            int?f[(MAXN+1)*3]?=?{0};
            int?n,?m;

            void?initTree()
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]?
            =?n;
            ????????c?
            =?c?*?2;
            ????????r?
            =?(l?+?r)?/?2;
            ????}

            ????f[c]?
            =?n;//葉子初始化
            }


            void?insertTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]
            ++;
            ????????mid?
            =?(r?+?l)?/?2;
            ????????
            if?(k?>?mid)
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????f[c]
            ++;//葉子增加1
            }


            void?delTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]
            --;
            ????????mid?
            =?(r?+?l)?/?2;
            ????????
            if?(k?>?mid)
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????f[c]
            --;//葉子減少1
            }


            int?searchTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????mid?
            =?(l?+?r)?/?2;
            ????????
            if?(k?<=?f[2*c+1])
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -=?f[2*c+1];
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????
            return?l;
            }


            int?main()
            {
            ????
            int?i,?j;
            ????
            int?x,?y;
            ????
            int?k;
            ????
            int?l,?r;
            ????
            int?cmd;
            ????
            int?px,?py;
            ????
            int?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            "%d%d",?&n,?&m);
            ????initTree();
            ????
            for?(i=0;?i<m;?i++)
            ????
            {
            ????????scanf(
            "%d",?&cmd);
            ????????
            if?(cmd?==?0)
            ????????
            {
            ????????????scanf(
            "%d%d",?&x,?&y);
            ????????????px?
            =?UFS.Find(x);
            ????????????py?
            =?UFS.Find(y);
            ????????????
            if?(px?!=?py)
            ????????????
            {
            ????????????????tx?
            =?-UFS.parent[px];
            ????????????????ty?
            =?-UFS.parent[py];
            ????????????????tz?
            =?tx?+?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            "%d",?&k);
            ????????????printf(
            "%d\n",?searchTree(k));
            ????????}

            ????}

            ????
            return?0;
            }
            posted on 2006-09-06 13:30 閱讀(806) 評論(4)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-08 23:01 Optimistic
            哇...偶木了  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-08 23:11 
            其實線段樹比較好懂, 但是難在怎么運用-_-個人感覺, 摸索中!~~~  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-28 12:21 踏雪赤兔
            進步很快哩~~贊一個!
            P.S.博客手拉手弄好了~  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-28 12:57 
            thx!~:)  回復  更多評論
              
            中文字幕日本人妻久久久免费| 久久久青草青青亚洲国产免观| 久久99精品久久久大学生| 久久精品国产男包| 麻豆精品久久久一区二区| 久久亚洲色一区二区三区| 人妻精品久久无码区| 久久免费香蕉视频| 国产成人精品白浆久久69| 91久久精一区二区三区大全| 久久精品国产一区二区电影| 久久人人爽人人爽人人AV东京热 | 久久人妻无码中文字幕| 99久久婷婷免费国产综合精品| 欧美一级久久久久久久大片| 国产亚洲综合久久系列| 亚洲精品国产自在久久| 精品亚洲综合久久中文字幕| 97精品依人久久久大香线蕉97| 精品熟女少妇aⅴ免费久久| 女人香蕉久久**毛片精品| 亚洲综合精品香蕉久久网| 久久亚洲2019中文字幕| 香蕉久久一区二区不卡无毒影院| 久久九九有精品国产23百花影院| 伊人久久大香线蕉亚洲五月天| 久久久WWW成人免费精品| 天天爽天天爽天天片a久久网| 久久天堂AV综合合色蜜桃网 | 97久久久精品综合88久久| 久久人做人爽一区二区三区| 香蕉久久永久视频| 久久久久国产一区二区三区| 亚洲午夜久久久精品影院| 九九99精品久久久久久| 久久国产乱子伦精品免费强| 久久久青草久久久青草| 久久综合中文字幕| 四虎国产精品免费久久5151| 国产99久久久国产精品~~牛| 久久精品国产亚洲一区二区|