• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2006年9月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 216558
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            USE?并查集和線段樹

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include?<iostream>
            using?namespace?std;
            const?int?MAXN?=?200001;

            class?UFset
            {
            public:
            ????
            int?parent[MAXN];
            ????UFset();
            ????
            int?Find(int);
            ????
            void?Union(int,?int);
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            -1,?sizeof(parent));
            }


            int?UFset::Find(int?x)
            {
            ????
            if?(parent[x]?<?0)
            ????????
            return?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            =?Find(parent[x]);
            ????????
            return?parent[x];
            ????}
            //?壓縮路徑
            }


            void?UFset::Union(int?x,?int?y)
            {
            ????
            int?pX?=?Find(x);
            ????
            int?pY?=?Find(y);
            ????
            int?tmp;
            ????
            if?(pX?!=?pY)
            ????
            {
            ????????tmp?
            =?parent[pX]?+?parent[pY];?//?加權合并
            ????????if?(parent[pX]?>?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            =?pY;
            ????????????parent[pY]?
            =?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            =?pX;
            ????????????parent[pX]?
            =?tmp;
            ????????}

            ????}

            }


            int?f[(MAXN+1)*3]?=?{0};
            int?n,?m;

            void?initTree()
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]?
            =?n;
            ????????c?
            =?c?*?2;
            ????????r?
            =?(l?+?r)?/?2;
            ????}

            ????f[c]?
            =?n;//葉子初始化
            }


            void?insertTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]
            ++;
            ????????mid?
            =?(r?+?l)?/?2;
            ????????
            if?(k?>?mid)
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????f[c]
            ++;//葉子增加1
            }


            void?delTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????f[c]
            --;
            ????????mid?
            =?(r?+?l)?/?2;
            ????????
            if?(k?>?mid)
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????f[c]
            --;//葉子減少1
            }


            int?searchTree(int?k)
            {
            ????
            int?l?=?1,?r?=?n;
            ????
            int?c?=?1;
            ????
            int?mid;

            ????
            while?(l?<?r)
            ????
            {
            ????????mid?
            =?(l?+?r)?/?2;
            ????????
            if?(k?<=?f[2*c+1])
            ????????
            {
            ????????????l?
            =?mid?+?1;
            ????????????c?
            =?c?*?2?+?1;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -=?f[2*c+1];
            ????????????r?
            =?mid;
            ????????????c?
            =?c?*?2;
            ????????}

            ????}

            ????
            return?l;
            }


            int?main()
            {
            ????
            int?i,?j;
            ????
            int?x,?y;
            ????
            int?k;
            ????
            int?l,?r;
            ????
            int?cmd;
            ????
            int?px,?py;
            ????
            int?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            "%d%d",?&n,?&m);
            ????initTree();
            ????
            for?(i=0;?i<m;?i++)
            ????
            {
            ????????scanf(
            "%d",?&cmd);
            ????????
            if?(cmd?==?0)
            ????????
            {
            ????????????scanf(
            "%d%d",?&x,?&y);
            ????????????px?
            =?UFS.Find(x);
            ????????????py?
            =?UFS.Find(y);
            ????????????
            if?(px?!=?py)
            ????????????
            {
            ????????????????tx?
            =?-UFS.parent[px];
            ????????????????ty?
            =?-UFS.parent[py];
            ????????????????tz?
            =?tx?+?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            "%d",?&k);
            ????????????printf(
            "%d\n",?searchTree(k));
            ????????}

            ????}

            ????
            return?0;
            }
            posted on 2006-09-06 13:30 閱讀(807) 評論(4)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-08 23:01 Optimistic
            哇...偶木了  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-08 23:11 
            其實線段樹比較好懂, 但是難在怎么運用-_-個人感覺, 摸索中!~~~  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-28 12:21 踏雪赤兔
            進步很快哩~~贊一個!
            P.S.博客手拉手弄好了~  回復  更多評論
              
            # re: 第一次用兩種數據結構解的題目, 紀念一下 2006-09-28 12:57 
            thx!~:)  回復  更多評論
              
            香蕉久久夜色精品国产2020| 久久国产成人午夜AV影院| 99久久精品国产一区二区蜜芽 | 亚洲中文字幕伊人久久无码| 久久91综合国产91久久精品| 久久精品中文无码资源站| 久久久一本精品99久久精品66| 亚洲欧美成人综合久久久| 亚洲AV无码久久精品色欲| 色欲久久久天天天综合网精品| 久久久久人妻精品一区| 久久精品人人做人人妻人人玩| 国内精品伊人久久久久AV影院| 韩国免费A级毛片久久| 久久精品国产秦先生| 久久国产一片免费观看| 欧美日韩成人精品久久久免费看| 精品久久久久久久国产潘金莲| 77777亚洲午夜久久多喷| 好久久免费视频高清| 久久精品夜色噜噜亚洲A∨| 亚洲精品综合久久| 无码精品久久久久久人妻中字 | 久久久久久精品免费看SSS| 亚洲中文字幕久久精品无码APP| 成人国内精品久久久久一区| 国产高清国内精品福利99久久| 亚洲精品国精品久久99热| 久久精品www人人爽人人| 久久精品国产精品亜洲毛片| 91麻豆国产精品91久久久| 久久精品国产秦先生| 久久久精品人妻一区二区三区蜜桃| 久久精品亚洲日本波多野结衣| 国产99久久久国产精品~~牛| 精品久久人人爽天天玩人人妻| 狠狠狠色丁香婷婷综合久久俺| 麻豆精品久久久久久久99蜜桃 | 国内精品九九久久精品 | 久久久人妻精品无码一区| 午夜精品久久久久久久久|