• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Problem F : Glenbow Museum

            The famous Glenbow Museum in Calgary is Western Canada’s largest museum, with exhibits ranging from art to
            cultural history to mineralogy. A brand new section is being planned, devoted to brilliant computer programmers just
            like you. Unfortunately, due to lack of space, the museum is going to have to build a brand new building and relocate
            into it.

            The size and capacity of the new building differ from those of the original building. But the floor plans of both
            buildings are orthogonal polygons. An orthogonal polygon is a polygon whose internal angles are either 90° or 270°.
            If 90° angles are denoted as R (Right) and 270° angles are denoted as O (Obtuse) then a string containing only R and
            O can roughly describe an orthogonal polygon. For example, a rectangle (Figure 1) is the simplest orthogonal
            polygon and it can be described as RRRR (the angles are listed in counter-clockwise order, starting from any corner).
            Similarly, a cross-shaped orthogonal polygon (Figure 2) can be described by the sequence RRORRORRORRO,
            RORRORRORROR, or ORRORRORRORR. These sequences are called angle strings.

                    Figure 1: A rectangle              Figure 2: A cross-shaped polygon
            Of course, an angle string does not completely specify the shape of a polygon – it says nothing about the length of
            the sides. And some angle strings cannot possibly describe a valid orthogonal polygon (RRROR, for example).

            To complicate things further, not all orthogonal polygons are acceptable floor plans for the museum. A museum
            contains many valuable objects, and these objects must be guarded. Due to cost considerations, no floor can have
            more than one guard. So a floor plan is acceptable only if there is a place within the floor from which one guard can
            see the entire floor. Similarly, an angle string is acceptable only if it describes at least one acceptable polygon. Note
            that the cross-shaped polygon in Figure 2 can be guarded by someone standing in the center, so it is acceptable. Thus
            the angle string RRORRORRORRO is acceptable, even though it also describes other polygons that cannot be
            properly guarded by a single guard.

            Help the designers of the new building determine how many acceptable angle strings there are of a given length.

            Input
            The input file contains several test cases. Each test case consists of a line containing a positive integer L (1≤L≤1000),
            which is the desired length of an angle string.

            The input will end with a line containing a single zero.

            Output
            For each test case, print a line containing the test case number (beginning with 1) followed by the number of
            acceptable angle strings of the given length. Follow the format of the sample output.

            Sample Input
            4
            6
            0

            Output for the Sample Input
            Case 1: 1
            Case 2: 6

                從一個所有邊都平行于坐標系的多邊形的任一頂點出發(fā),逆時針遍歷,記錄每次經(jīng)過的頂點處的轉(zhuǎn)角,組成的字符串叫做angle string。求指定長度的angle string中,能表示至少一個星形多邊形的串個數(shù)。 
                顯然當l=2k+1時,解不存在;當l=2k時,設(shè)m=(l+4)/2,根據(jù)組合數(shù)的知識,所求結(jié)果為C(m,4)+C(m-1,4)。
            400016  2009-04-24 04:51:44  Accepted  0.000  Minimum  19193  C++  4123 - Glenbow Museum
             1 #include <iostream>
             2 using namespace std;
             3 
             4 typedef long long LL;
             5 inline LL cal(LL n){             //C(n,4) 
             6     return n*(n-1)*(n-2)*(n-3)/24;
             7 }
             8 int main(){
             9     int ca=1;
            10     LL n;
            11     while(cin>>n,n){
            12         if(n & 1)
            13             cout<<"Case "<<ca++<<""<<0<<endl;
            14         else{
            15             n=(n+4)>>1;
            16             cout<<"Case "<<ca++<<""<<cal(n)+cal(n-1)<<endl;
            17         }
            18     }
            19     return 0;
            20 }

            posted on 2009-04-24 11:32 極限定律 閱讀(1020) 評論(0)  編輯 收藏 引用 所屬分類: ACM-ICPC World Final 2008題解

            <2009年4月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            導航

            統(tǒng)計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            www.久久99| 久久精品国产亚洲AV大全| 99久久婷婷国产一区二区| 国产91久久综合| 久久精品国产精品亜洲毛片| 久久久久亚洲AV成人网| 久久婷婷五月综合97色直播 | 国产精品视频久久| 久久亚洲国产精品一区二区| 久久久WWW成人免费精品| 2021国内精品久久久久久影院| 72种姿势欧美久久久久大黄蕉| 亚洲嫩草影院久久精品| 伊人久久五月天| 日本久久久精品中文字幕| 伊人久久大香线蕉综合热线| 久久国产成人精品麻豆| 99久久这里只精品国产免费| 国产精品激情综合久久| 久久精品99久久香蕉国产色戒| 日本亚洲色大成网站WWW久久| 99久久超碰中文字幕伊人| 精品久久久久久久久免费影院| 99热都是精品久久久久久| 国产精品一区二区久久国产| 狠狠色丁香久久婷婷综合蜜芽五月| 大美女久久久久久j久久| 久久久精品人妻一区二区三区四| 欧美日韩精品久久免费| 久久久久噜噜噜亚洲熟女综合| 久久er热视频在这里精品| 久久国产精品成人影院| 亚洲成人精品久久| 久久精品国产亚洲AV不卡| 国产午夜精品久久久久九九| 久久人人爽人人爽人人av东京热| 久久99精品国产99久久6男男| 久久久久人妻一区精品性色av| 久久久久高潮综合影院| 99久久精品国产一区二区| 亚洲欧美日韩久久精品|