• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Problem F : Glenbow Museum

            The famous Glenbow Museum in Calgary is Western Canada’s largest museum, with exhibits ranging from art to
            cultural history to mineralogy. A brand new section is being planned, devoted to brilliant computer programmers just
            like you. Unfortunately, due to lack of space, the museum is going to have to build a brand new building and relocate
            into it.

            The size and capacity of the new building differ from those of the original building. But the floor plans of both
            buildings are orthogonal polygons. An orthogonal polygon is a polygon whose internal angles are either 90° or 270°.
            If 90° angles are denoted as R (Right) and 270° angles are denoted as O (Obtuse) then a string containing only R and
            O can roughly describe an orthogonal polygon. For example, a rectangle (Figure 1) is the simplest orthogonal
            polygon and it can be described as RRRR (the angles are listed in counter-clockwise order, starting from any corner).
            Similarly, a cross-shaped orthogonal polygon (Figure 2) can be described by the sequence RRORRORRORRO,
            RORRORRORROR, or ORRORRORRORR. These sequences are called angle strings.

                    Figure 1: A rectangle              Figure 2: A cross-shaped polygon
            Of course, an angle string does not completely specify the shape of a polygon – it says nothing about the length of
            the sides. And some angle strings cannot possibly describe a valid orthogonal polygon (RRROR, for example).

            To complicate things further, not all orthogonal polygons are acceptable floor plans for the museum. A museum
            contains many valuable objects, and these objects must be guarded. Due to cost considerations, no floor can have
            more than one guard. So a floor plan is acceptable only if there is a place within the floor from which one guard can
            see the entire floor. Similarly, an angle string is acceptable only if it describes at least one acceptable polygon. Note
            that the cross-shaped polygon in Figure 2 can be guarded by someone standing in the center, so it is acceptable. Thus
            the angle string RRORRORRORRO is acceptable, even though it also describes other polygons that cannot be
            properly guarded by a single guard.

            Help the designers of the new building determine how many acceptable angle strings there are of a given length.

            Input
            The input file contains several test cases. Each test case consists of a line containing a positive integer L (1≤L≤1000),
            which is the desired length of an angle string.

            The input will end with a line containing a single zero.

            Output
            For each test case, print a line containing the test case number (beginning with 1) followed by the number of
            acceptable angle strings of the given length. Follow the format of the sample output.

            Sample Input
            4
            6
            0

            Output for the Sample Input
            Case 1: 1
            Case 2: 6

                從一個所有邊都平行于坐標系的多邊形的任一頂點出發,逆時針遍歷,記錄每次經過的頂點處的轉角,組成的字符串叫做angle string。求指定長度的angle string中,能表示至少一個星形多邊形的串個數。 
                顯然當l=2k+1時,解不存在;當l=2k時,設m=(l+4)/2,根據組合數的知識,所求結果為C(m,4)+C(m-1,4)。
            400016  2009-04-24 04:51:44  Accepted  0.000  Minimum  19193  C++  4123 - Glenbow Museum
             1 #include <iostream>
             2 using namespace std;
             3 
             4 typedef long long LL;
             5 inline LL cal(LL n){             //C(n,4) 
             6     return n*(n-1)*(n-2)*(n-3)/24;
             7 }
             8 int main(){
             9     int ca=1;
            10     LL n;
            11     while(cin>>n,n){
            12         if(n & 1)
            13             cout<<"Case "<<ca++<<""<<0<<endl;
            14         else{
            15             n=(n+4)>>1;
            16             cout<<"Case "<<ca++<<""<<cal(n)+cal(n-1)<<endl;
            17         }
            18     }
            19     return 0;
            20 }

            posted on 2009-04-24 11:32 極限定律 閱讀(1024) 評論(0)  編輯 收藏 引用 所屬分類: ACM-ICPC World Final 2008題解

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            韩国三级中文字幕hd久久精品| 久久只这里是精品66| 久久精品国产亚洲av麻豆色欲| 久久99国内精品自在现线| 久久精品国产一区| 久久精品成人| 久久久久人妻精品一区二区三区 | 久久久久久久亚洲精品| 中文字幕乱码人妻无码久久| 91精品国产综合久久婷婷| 性做久久久久久久久| 久久精品亚洲一区二区三区浴池 | 伊人久久亚洲综合影院| 99久久久精品| 99久久做夜夜爱天天做精品| 99久久国产热无码精品免费久久久久| 久久久久亚洲精品男人的天堂| 久久婷婷激情综合色综合俺也去 | 国产一区二区三精品久久久无广告| 国内精品伊人久久久久777| 精品国产婷婷久久久| 久久精品国产99久久无毒不卡| 中文字幕久久精品| 久久久久亚洲av毛片大| 久久最近最新中文字幕大全| 久久人人妻人人爽人人爽| 热久久国产欧美一区二区精品| 中文精品久久久久国产网址| 成人资源影音先锋久久资源网| 久久国语露脸国产精品电影| 99久久这里只精品国产免费| 久久人人超碰精品CAOPOREN| 精品久久久无码中文字幕天天 | 午夜精品久久久久久| 国产高潮国产高潮久久久91 | 亚洲美日韩Av中文字幕无码久久久妻妇| 精品永久久福利一区二区| 久久男人Av资源网站无码软件| 亚洲精品无码专区久久久| 中文字幕久久波多野结衣av| 久久亚洲私人国产精品vA|