• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Problem B : Always an Integer

            Combinatorics is a branch of mathematics chiefly concerned with counting discrete objects. For instance, how many ways can you pick two people out of a crowd of n people? Into how many regions can you divide a circular disk by connecting n points on its boundary with one another? How many cubes are in a pyramid with square layers ranging from 1 × 1 to n × n cubes?


                               TFigure 1:T If we connect six points on the boundary of a circle, at most 31 regions are created.

            Many questions like these have answers that can be reduced to simple polynomials in n. The answer to the first question above is n(n-1)/2, or (n^2-n)/2. The answer to the second is (n^4-6n^3+23n^2-18n+24)/24. The answer to the third is n(n+1)(2n+1)/6, or (2n^3+3n^2+n)/6. We write these polynomials in a standard form, as a polynomial with integer coefficients divided by a positive integer denominator. These polynomials are answers to questions that can have integer answers only. But since they have fractional coefficients, they look as if they could produce non-integer results! Of course, evaluating these particular polynomials on a positive integer always results in an integer. For other polynomials of similar form, this is not necessarily true. It can be hard to tell the two cases apart. So that, naturally, is your task.

            Input
            The input consists of multiple test cases, each on a separate line. Each test case is an expression in the form (P)/D, where P is a polynomial with integer coefficients and D is a positive integer denominator. P is a sum of terms of the form Cn^E, where the coefficient C and the exponent E satisfy the following conditions:
            1. E is an integer satisfying 0 ≤ E ≤ 100. If E is 0, then Cn^E is expressed as C. If E is 1, then Cn^E is expressed as Cn, unless C is 1 or -1. In those instances, Cn^E is expressed as n or -n.
            2. C is an integer. If C is 1 or -1 and E is not 0 or 1, then the Cn^E will appear as n^E or -n^E.
            3. Only non-negative C values that are not part of the first term in the polynomial are preceded by +.
            4. Exponents in consecutive terms are strictly decreasing.
            5. C and D fit in a 32-bit signed integer.

             

            See the sample input for details.
            Input is terminated by a line containing a single period.

            Output
            For each test case, print the case number (starting with 1). Then print TAlways an integerT if the test casepolynomial evaluates to an integer for every positive integer n. Print TNot always an integerT otherwise. Print the output for separate test cases on separate lines. Your output should follow the same format as the sample output.

            Sample Input
            (n^2-n)/2
            (2n^3+3n^2+n)/6
            (-n^14-11n+1)/3
            .

            Output for the Sample Input
            Case 1: Always an integer
            Case 2: Always an integer
            Case 3: Not always an integer

            題目大概的意思是說:給定一個關于n的p次多項式,問該多項式是否為整值多項式。
            根據定理:n次多項式f(n)是整值多項式當且僅當f(n)至少在n+1個連續的整數上都取整值。
            只用將0-MAXPOW(取101)依次代入多項式的分子,并對分母d取模,判斷是否都為0即可。
            至于為什么要取MAXPOW,而不是多項式f(n)的最大的次數max{pi}:為了使問題一般化,我們可以講所有的多項式都看成是MAXPOW次的,只不過當次數p>max{pi}時,其對應的系數ci全部為0,并不妨礙問題的解決。這樣一來,就不需要再額外求出f(n)的最大次數max{pi},使程序得到簡化。

            399645  2009-04-23 07:44:07 Accepted 0.066 Minimum 19193  C++ 4119 - Always an integer
             1 #include <iostream>
             2 using namespace std;
             3 
             4 const int MAXPOW = 101;
             5 int c[MAXPOW],d;
             6 char ch;
             7 
             8 int calculate(long long n){
             9     int i;
            10     long long ans=0;
            11     for(i=MAXPOW;i>=0;i--)
            12         ans=(ans*n+c[i])%d;
            13     return (int)ans;
            14 }
            15 bool judge(){
            16     int i;
            17     for(i=0;i<=MAXPOW;i++)
            18         if(calculate(i)) return false;
            19     return true;
            20 }
            21 int main(){
            22     int end,ca=1,sign,value,pow;
            23     while(true){
            24         ch=getchar();
            25         if(ch=='.'break;
            26         memset(c,0,sizeof(c));
            27         while(true){
            28             end=0,scanf(")%n",&end);
            29             if(end) break;
            30             scanf("+");
            31             sign=0,value=1,scanf("-%n",&sign);
            32             scanf("%d",&value);
            33             if(sign) value=-value;
            34             scanf("%nn%n^%n",&pow,&pow,&pow);
            35             if(pow>1) scanf("%d",&pow);
            36             c[pow]+=value;
            37         }
            38         scanf("/%d",&d);
            39         getchar();
            40         printf("Case %d: ",ca++);
            41         puts(judge() ? "Always an integer" : "Not always an integer");
            42     }
            43     return 0;
            44 }

            posted on 2009-04-23 12:51 極限定律 閱讀(1869) 評論(0)  編輯 收藏 引用 所屬分類: ACM-ICPC World Final 2008題解

            <2009年5月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            婷婷久久综合| 久久综合视频网站| 欧美精品久久久久久久自慰| 99久久无色码中文字幕人妻| 久久精品夜夜夜夜夜久久| 久久涩综合| 久久久久久久人妻无码中文字幕爆 | 国产精品99久久99久久久| 久久国产精品偷99| 久久99中文字幕久久| 久久婷婷色综合一区二区| 久久无码一区二区三区少妇| 久久精品国产清自在天天线| 久久99亚洲综合精品首页| 久久国产精品一区二区| 久久91精品国产91| 日日狠狠久久偷偷色综合免费 | 久久人与动人物a级毛片| 国产成人香蕉久久久久| 久久精品国产免费| 久久综合给合久久狠狠狠97色69| 久久精品夜色噜噜亚洲A∨| 精品久久久久久综合日本| 亚洲AV成人无码久久精品老人| 国内精品伊人久久久久妇| 久久久久亚洲?V成人无码| 99久久精品免费| 国产激情久久久久影院老熟女| 亚洲精品无码成人片久久| 热99RE久久精品这里都是精品免费| 久久国产一片免费观看| 国产精品无码久久久久 | 香蕉久久夜色精品国产尤物| 色综合久久天天综线观看| 久久96国产精品久久久| 99久久人妻无码精品系列蜜桃| 亚洲国产精品久久电影欧美| 久久发布国产伦子伦精品| 久久99精品久久久久久动态图| 日韩精品久久久久久久电影蜜臀| 亚洲成色www久久网站夜月|