• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆-80  評論-24  文章-0  trackbacks-0
            逆序數問題是這樣的一個問題:給定一個不含重復元素的序列<a1, a2, ..., an>,對于元素ai,若從a1~ai-1這i - 1個數中有k個數是比ai大的,那么ai的逆序數就是k,其中序列中的元素是可進行大小比較的。那么如何求一個序列的所有逆序的數量的總和呢?
            我們可以考慮試試分治法,對于序列<a1, a2, ..., an>,我們可否先求<a1, a2, ..., an/2>和<an/2+1, an/2+2, ..., an>兩個序列的各自的逆序數,然后再將兩個逆序數相加是否就得到了總的逆序數呢?其實先求兩個子序列的逆序數沒有問題,直接相加也沒問題,問題就出在,上述解法還漏掉了在子序列1中的元素比子序列2中的元素大的那種逆序,也就是跨越兩個子序列的逆序。其實也就是下面的公式:T(n) = 2T(n/2) + T(merge)。關鍵問題就是如何求T(merge)。若序列seq1<a1, a2, ..., an/2>和序列seq2<an/2+1, an/2+2, ..., an>都是無序的,那么要找seq1中比an/2+i大的元素的數量則必須遍歷seq1,這時候T(merge)的時間復雜度為O(n2)。那么T(n) = 2T(n/2) + O(n2)。總的時間復雜度太高。這樣的merge不理想。那么如果seq1和seq2已經各自有序了呢?我們該如何merge呢?為了保持在遞歸過程中始終使子序列有序,我們每次merge后的序列都必須是有序的,所以這就個merge的過程就成了歸并排序的merge過程了!!!關鍵就是在歸并排序merge過程中該如何正確記錄兩個子序列之間的逆序數呢?歸并排序其實就是對兩個子序列,兩個index i和j依次向后掃,對seq1[i]和seq2[j]做判斷,若seq1[i]比seq2[j]大,則j++;若seq1[i]比seq2[j]小,則i++;我們仔細想想其實不難發現,若seq1[i]比seq2[j]小,那么seq2[1]~seq2[j  - 1]肯定都比seq1[i]小,這時候由seq1[i]決定的逆序數肯定為1 ~ j - 1;若seq1[i]比seq2[j]大,那么由于seq1[i]還有可能比seq2[j]后面的元素大,所以我們不計算。最后i和j有一個走到尾部之后,若seq1[]還有元素沒有被掃描過,那么這些剩余的未被掃描的元素肯定比seq2[]中的所有元素都大,所以剩余這些的逆序數為seq1[]中剩余的元素數量 * seq2[]中總元素的數量。
            根據poj2299(ultra quicksort)題目寫的程序比較容易理解:

             1 #include <cstdio>
             2 #include <cstdlib>
             3 
             4 #define MAX 500005
             5 int a[MAX];
             6 
             7 long long merge(int *array, int low, int mid, int high) {
             8   if (!array) {
             9     return 0;
            10   }
            11   long long res = 0;
            12   int *buf = (int *)malloc(sizeof(int) * (high - low + 1));
            13   int i = low, j = mid + 1, k = 0;
            14   while (i <= mid && j <= high) {
            15     if (array[i] < array[j]) {
            16       buf[k++] = array[i++];
            17       res += j - mid - 1; //逆序數
            18     } else {
            19       buf[k++] = array[j++];
            20     }   
            21   }
            22   while (i <= mid) {
            23     buf[k++] = array[i++];
            24     res += high - mid;
            25   }
            26   while (j <= high) {
            27     buf[k++] = array[j++];
            28   }
            29   for (i = 0; i < k; ++i) {
            30     array[low + i] = buf[i];
            31   }
            32   free(buf);
            33   return res;
            34 }
            35 
            36 long long merge_sort(int *array, int low, int high) {
            37   if (!array || low >= high) {
            38     return 0;
            39   }
            40   int mid = (low + high) / 2;
            41   long long res1 = merge_sort(array, low, mid);
            42   long long res2 = merge_sort(array, mid + 1, high);
            43   long long res3 = merge(array, low, mid, high);
            44   return res1 + res2 + res3;
            45 }
            46 
            47 int main() {
            48   int n;
            49   while (scanf("%d", &n), n) {
            50     int i;
            51     for (i = 0; i < n; ++i) {
            52       scanf("%d", &a[i]);
            53     }
            54     printf("%lld\n", merge_sort(a, 0, n - 1));
            55   }
            56   return 0;
            57 }

            另外這道題目其實還可以用線段樹來解決,和上篇文章中秋stars的level的很像,stars那道題目是求序列中所有在自己前面的不大于自己值的數的數量。而逆序數是求所有在自己前面的大于自己值的數的數量。用同樣的方法就可以解決,只不過由于該題的a[i]值比較大,最大值為999999999,這樣的線段樹太耗費內存。

            到此時,其實上面的算法都比較常規,大部分人都知道求逆序數該用歸并排序做,但是其實告訴大家一個事實,一個類似快排的樹形結構,二叉排序樹BST其實也可以做。只不過在二叉排序樹的每個節點中都記錄一個新的值,該值表示當前節點的右子樹有多少個節點。具體算法不講了,很簡單,看代碼:

             1 #include <cstdio>
             2 #include <cstdlib>
             3 
             4 #define MAX 500005
             5 
             6 struct BST {
             7   int value;
             8   int larger;
             9   BST *left;
            10   BST *right;
            11 };
            12 
            13 BST* insert(BST *t, int x, long long *count) {
            14   if (!t) {
            15     t = (BST *)malloc(sizeof(BST));
            16     t->value = x;
            17     t->larger = 0;
            18     t->left = t->right = NULL;
            19     return t;
            20   }
            21   if (t->value > x) {
            22     (*count) += 1 + t->larger;
            23     t->left = insert(t->left, x, count);
            24   } else {
            25     (t->larger)++;
            26     t->right = insert(t->right, x, count);
            27   }
            28   return t;
            29 }
            30 
            31 void release(BST *t) {
            32   if (!t) {
            33     return;
            34   }
            35   release(t->left);
            36   release(t->right);
            37   free(t);
            38 }
            39 
            40 int main() {
            41   int n;
            42   while (scanf("%d", &n), n) {
            43     int i, tmp;
            44     long long res = 0;
            45     BST *root = NULL;
            46     for (i = 0; i < n; ++i) {
            47       scanf("%d", &tmp);
            48       root = insert(root, tmp, &res);
            49     }
            50     printf("%lld\n", res);
            51     release(root);
            52   }
            53   return 0;
            54 }

            但是考慮到二叉排序樹在最差情況下的性能為O(n2)的,所以用二叉排序樹的算法會比采用歸并排序的算法慢,時間為2700MS。這里要說明的是這里講用二叉排序樹來求逆序數只是講這種思想,平均時間性能肯定沒有歸并排序快,但是這種思想還是需要仔細揣摩揣摩的。
            posted on 2012-09-15 14:56 myjfm 閱讀(2892) 評論(0)  編輯 收藏 引用 所屬分類: 算法基礎
            99久久人妻无码精品系列| 国内精品久久久久久久影视麻豆| 精品伊人久久久| 伊人久久综合成人网| 婷婷综合久久狠狠色99h| 欧美一级久久久久久久大| 亚洲国产欧美国产综合久久| av无码久久久久久不卡网站| 久久综合九色综合欧美就去吻| 蜜臀av性久久久久蜜臀aⅴ| 狠狠久久综合伊人不卡| 欧美一区二区三区久久综合| 国产国产成人久久精品| 国产精品国色综合久久| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 久久无码一区二区三区少妇| 一本色道久久88精品综合| 99久久精品久久久久久清纯| 99精品久久精品一区二区| 精品人妻伦九区久久AAA片69| 青青草原精品99久久精品66| 久久国产成人| 国产成人精品久久免费动漫| 久久亚洲sm情趣捆绑调教| 99久久精品免费看国产| 久久久久人妻精品一区二区三区| 国产AV影片久久久久久| 99久久99久久精品免费看蜜桃| 亚洲国产精品综合久久一线 | 久久99精品久久久久久| 久久婷婷五月综合色奶水99啪 | 国产精品视频久久久| 久久这里只有精品首页| 内射无码专区久久亚洲| 久久99精品国产99久久6| 97久久精品人人做人人爽| 国产精品久久精品| 久久久久免费精品国产| 久久婷婷综合中文字幕| 91久久精品国产91性色也| 久久久久久久99精品免费观看|