青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

隨筆-80  評論-24  文章-0  trackbacks-0
問題如題目,不過數組是無序數組,數組中元素個數假設為n
下面介紹第一種最樸素的做法:
設定兩個變量,first和second,然后依次遍歷數組;如果當前遍歷元素a[i]比first大,則second = first, first = a[i];如果當前遍歷元素a[i]比first小,則再比較a[i]與second的大小,如果a[i]比second大,則second = a[i],否則second值不變。那么上面算法的復雜度是多少呢?我先寫出代碼再分析復雜度,代碼比較簡單:

 1 int find_second_1(int *a, int n) {
 2   assert(a != NULL && n > 1); 
 3   int first = a[0];
 4   int second = a[1];
 5   if (first < second) {
 6     first = a[1];
 7     second = a[0];
 8  }
 9   for (int i = 2; i < n; ++i) {
10     if (a[i] > first) {
11       second = first;
12       first = a[i];
13     } else {
14       if (a[i] > second) {
15         second = a[i];
16       }
17     }
18   }
19   return second;
20 }

其實這個問題很容易就能寫出O(n)復雜度的算法,反而想寫出比O(n)復雜度高的還不太容易,所以我們這里就著重分析比較次數,上面算法可以看出在n>2時,比較次數跟給定數組當前狀況有關,比如,如果當前數組已經遞增有序,則算法只需要比較n - 1次;但是如果當前數組已經遞減有序,則算法需要比較2n - 3次,所以我們可以知道上面算法的最壞情況比較次數為2n - 3,最好情況比較次數為n - 1;我們這里假設數組中的數的大小符合均勻隨機分布,則當前a[i]比first大的概率為0.5,當前a[i]比first小的概率也為0.5,所以總的期望比較次數=1 + 0.5(n - 2) + 0.5 * 2 * (n - 2) = 1.5n - 2;所以總結如下:
算法的最壞情況比較次數為2n - 3,
算法的最好情況比較次數為n - 1,
算法的期望比較次數為1.5n - 2;
那么能不能改進算法讓使得在最壞情況下也比較1.5n + c次呢?c為一小常數。答案是肯定的。
上面算法中,在掃描數組的時候每次取一個元素和first以及second比較,那么我們能不能每次取兩個元素a[i]和a[i + 1]呢?這兩個元素先確定大小關系,假設為tmpfirst以及tmpsecond,這只需一次比較,然后再通過類似歸并排序的歸并步驟確定first、second和tmpfirst、tmpsecond兩個有序子數組合并后的newfirst和newsecond,這只需要確定的2次比較,綜上可知每次取兩個元素的話總的比較次數為3次,而原來算法確定兩個元素a[i]和a[i + 1]需要2次(最好)或4次(最差)比較。這樣就讓算法固定在1.5n + c次比較,具體c是多少,我們先寫代碼看:

 1 int find_second_2(int *a, int n) {
 2   assert(a != NULL && n > 1);
 3   int first = a[0];
 4   int second = a[1];
 5   if (first < second) {
 6     first = a[1];
 7     second = a[0];
 8   }
 9   for (int i = 2; i < n - 1; i += 2) {
10     int tmpfirst = a[i];
11     int tmpsecond = a[i + 1];
12     if (tmpfirst < tmpsecond) {
13       tmpfirst = a[i + 1];
14       tmpsecond = a[i];
15     }
16     if (first > tmpfirst) {
17       if (second < tmpfirst) {
18         second = tmpfirst;
19       }
20     } else {
21       first = tmpfirst;
22       if (first < tmpsecond) {
23         second = tmpsecond;
24       }
25     }
26   }
27   if (n % 2) {
28     if (a[n - 1] < first) {
29       if (a[n - 1] > second) {
30         second = a[n - 1];
31       }
32     } else {
33       second = first;
34       first = a[n - 1];
35     }
36   }
37   return second;
38 }

上面算法需要區分n為偶數和奇數的情況,通過分析代碼我們可以得出如下結論:
若n為偶數,則總的比較次數 = 1 + 1.5 * (n - 2) = 1.5n - 2;
若n為奇數,則總的比較次數 = 1 + 1.5 * (n - 3) + 1 = 1.5n - 2.5或總的比較次數 = 1 + 1.5 * (n - 3) + 2 = 1.5n - 1.5
可以知道,上面算法確實可以將總的比較次數限定在1.5n + c的范圍,且c比較小。
那么現在又有問題了,能不能通過每次取多于2個元素比如每次取3個元素a[i]、a[i  + 1]、a[i + 2],一次性確定3個元素的大小,比如tmpfirst、tmpsecond、tmpthird,然后再確定first、second以及tmpfirst、tmpsecond、tmpthird這五個元素中前兩大的元素,我們可以計算一下,確定a[i]、a[i + 1]、a[i + 2]三個元素的大小關系至少需要三次比較,這樣平攤到每個元素需要1次比較,而上面算法確定兩個元素大小只需要一次比較,平攤到一個元素只需要0.5次比較,所以每次取多于2個元素的方法行不通。
那么還有沒有其他的辦法呢?
仔細分析前面的算法,它的核心思想是每確定a[i]和a[i + 1]的大小關系之后就緊接著和first以及second比較來更新first和second,那我們能不能先依次確定(a[1]、a[2]),(a[3]、a[4]),...,(a[n - 1]、a[n]),然后再確定(a[1]、a[2]、a[3]、a[4]),...,(a[n - 3]、a[n - 2]、a[n - 1]、a[n]),這樣依次合并,最后確定(a[1]、a[2]、...、a[n])的first和second,這不就是分治的思想嘛…和歸并排序一樣一樣的。代碼如下:

 1 #define INF -10000000
 2 
 3 struct first_and_second {
 4   int first;
 5   int second;
 6 };
 7 
 8 first_and_second find_second_3(int *a, int start, int end) {
 9   assert(a != NULL);
10   first_and_second res;
11   if (start > end) {
12     res.first = res.second = INF;
13   } else if (start == end) {
14     res.first = a[start];
15     res.second = INF;
16   } else if (start == end - 1) {
17     if (a[start] > a[end]) {
18       res.first = a[start];
19       res.second = a[end];
20     } else {
21       res.first = a[end];
22       res.second = a[start];
23     }
24   } else {
25     first_and_second t1 = find_second_3(a, start, ((end - start) >> 1) + start);
26     first_and_second t2 = find_second_3(a, (((end - start) >> 1) + start + 1), end);
27     if (t1.first > t2.first) {
28       res.first = t1.first;
29       if (t2.first > t1.second) {
30         res.second = t2.first;
31       } else {
32         res.second = t1.second;
33       }
34     } else {
35       res.first = t2.first;
36       if (t1.first > t2.second) {
37         res.second = t1.first;
38       } else {
39         res.second = t2.second;
40       }
41     }
42   }
43   return res;
44 }

算法是很漂亮,同樣來分析一下比較次數吧:
根據遞歸,可以很容易寫出如下遞推式:T(n) = 2T(n/2) + 2,其中2T(n/2)是子問題需要的比較次數,2是兩個子問題歸并需要的次數。根據《算法導論》主定理,我們可以知道T(n)是O(n)的,哈哈!我們至少沒有寫出一個比O(n)高階的算法!但是還沒有辦法確定n前面的系數到底有多大,我們下面就簡單遞推一下:
T(n) = 2T(n/2) + 2 = 2(2T(n/4) + 2) + 2 = 2[2(2T(n/8) + 2) + 2] + 2 = ... = 2[log2n - 1]T(n/ 2[log2n - 1] ) + 21 + 22 + ... + 2[log2n - 1] = (n/2)T(2) + n - 2,又易知T(2)為1,所以T(n) = 1.5n - 2,上面的計算并不是非常嚴謹 ,但是不會影響判斷1.5的得出,所以我們可以看出,雖然采用了分治的方法,但是比較次數并沒有降低,其實仔細思考的話會發現分治和上面的每次取兩個元素比較的思想是等同的。

上面僅僅是針對取數組中第二大數來分析的,如果要取數組中第k大數的話就不適用了,具體可以參見《算法導論》中位數與順序統計章節,里面的介紹很精彩。
posted on 2012-09-05 14:43 myjfm 閱讀(4663) 評論(5)  編輯 收藏 引用 所屬分類: 算法基礎

評論:
# re: 查找數組中第二大的數 2013-02-23 13:40 | chraac
竊以為。。。第二段代碼。。。是不是該將21行移到25和25行之間。。。  回復  更多評論
  
# re: 查找數組中第二大的數 2013-03-24 18:59 | 江南煙雨
你每次取兩個數,然后利用歸并思想的那個方法,是怎么算出來是1.5n的???f(n)=2f(n/2)+3表示疑問~~  回復  更多評論
  
# re: 查找數組中第二大的數[未登錄] 2013-03-24 19:20 | myjfm
@江南煙雨
若n為偶數,則總的比較次數 = 1 + 1.5 * (n - 2) = 1.5n - 2;
若n為奇數,則總的比較次數 = 1 + 1.5 * (n - 3) + 1 = 1.5n - 2.5或總的比較次數 = 1 + 1.5 * (n - 3) + 2 = 1.5n - 1.5
結合第二段代碼,應該很容易分析出來吧?每個主循環內的比較次數是3次,主循環的循環次數為(n - 2) / 2次或者為(n - 3) / 2次。  回復  更多評論
  
# re: 查找數組中第二大的數[未登錄] 2014-02-10 10:17 | X
@chraac
嗯。肯定的。他先復制,tmpfirst肯定是比tmpsecond大,應該是先比較后賦值,而不應該是先賦值后比較。  回復  更多評論
  
# re: 查找數組中第二大的數 2014-11-07 21:37 | Leon_Dai
這是我實現的一種方法,是基于堆排序的,可以在nlogK的時間復雜度內查找到前K個最小(或者最大)的元素
還請樓主多多指教,詳情見我的博客主頁  回復  更多評論
  
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲国内自拍| 亚洲一区二区精品视频| 亚洲欧美日韩国产精品| 欧美系列亚洲系列| 夜夜嗨av一区二区三区网站四季av| 欧美sm极限捆绑bd| 麻豆国产va免费精品高清在线| 在线看日韩欧美| 欧美国产高潮xxxx1819| 免费观看成人www动漫视频| 亚洲精品久久久久久下一站| 亚洲第一精品电影| 欧美激情第4页| 亚洲一区亚洲| 亚洲欧美日韩精品久久亚洲区| 国产精品嫩草久久久久| 久久久久久久久久久久久久一区| 久久精品在线播放| 亚洲精品综合在线| 亚洲一二三区在线观看| 国内视频一区| 亚洲区免费影片| 国产精品欧美日韩一区二区| 久久久精品五月天| 欧美高清视频免费观看| 午夜性色一区二区三区免费视频| 欧美一区二区三区播放老司机| 曰韩精品一区二区| 日韩视频在线观看免费| 国产一区二区主播在线| 亚洲人成久久| 国产在线麻豆精品观看| 亚洲精品看片| 狠狠色综合色综合网络| 亚洲美女精品久久| 伊人久久大香线蕉av超碰演员| 亚洲免费精彩视频| 曰本成人黄色| 亚洲免费在线视频一区 二区| 亚洲国产精品免费| 小黄鸭精品aⅴ导航网站入口| 亚洲人成小说网站色在线| 亚洲在线成人| 亚洲视屏在线播放| 卡通动漫国产精品| 香蕉尹人综合在线观看| 欧美高清不卡在线| 久久视频免费观看| 国产精品二区二区三区| 亚洲国产老妈| 亚洲国产视频一区| 久久精品成人一区二区三区蜜臀| 在线一区视频| 欧美精彩视频一区二区三区| 久久精品91| 国产精品亚洲综合久久| 亚洲国产精品成人综合| 国内久久精品| 欧美中文字幕精品| 久久精品理论片| 国产精品主播| 亚洲欧美在线高清| 欧美一二三区在线观看| 欧美色道久久88综合亚洲精品| 亚洲第一精品夜夜躁人人躁| 在线观看视频日韩| 久久成人人人人精品欧| 久久九九久久九九| 国产亚洲综合精品| 久久超碰97中文字幕| 久久久国产精品一区二区三区| 国产精品任我爽爆在线播放| 亚洲一区二区影院| 欧美一区二区日韩一区二区| 国产精品美女久久久免费| 亚洲午夜日本在线观看| 亚洲欧美在线高清| 国产精品视频网址| 欧美一级在线视频| 久久天堂成人| 激情综合电影网| 老牛国产精品一区的观看方式| 欧美二区在线观看| 亚洲日本中文字幕| 欧美日韩一卡二卡| 亚洲愉拍自拍另类高清精品| 久久av资源网站| 在线观看亚洲精品视频| 欧美成人久久| 一区二区日本视频| 久久精品99无色码中文字幕 | 一本到12不卡视频在线dvd| 亚洲午夜电影在线观看| 国产精品视频在线观看| 久久9热精品视频| 亚洲电影下载| 亚洲在线黄色| 在线观看免费视频综合| 欧美精品一区二| 欧美一级免费视频| 欧美激情偷拍| 欧美一区二区三区四区高清 | 国产日韩欧美二区| 久久全国免费视频| av成人手机在线| 美女久久一区| 亚洲小说欧美另类社区| 激情av一区| 欧美体内she精视频在线观看| 欧美一区二区女人| 日韩视频一区二区三区| 六月婷婷久久| 午夜亚洲视频| 亚洲精品你懂的| 国产一区二区0| 欧美日韩视频在线一区二区观看视频| 午夜一区二区三区不卡视频| 亚洲成人在线视频播放| 久久精品在线免费观看| 中文精品一区二区三区| 亚洲福利视频三区| 国产日韩综合| 欧美性色综合| 欧美久久综合| 久久亚洲精品一区| 欧美在线视频全部完| 一区二区三区高清| 亚洲人成亚洲人成在线观看图片| 久久精品中文字幕一区二区三区| 亚洲小视频在线| 亚洲精品少妇| 亚洲国产一区二区视频| 国产中文一区二区| 国产欧美日韩麻豆91| 国产精品女主播在线观看| 欧美日韩在线播放三区| 欧美高清在线播放| 欧美fxxxxxx另类| 久久久久国产精品一区二区| 欧美一区三区三区高中清蜜桃| 亚洲视频综合| 一本色道婷婷久久欧美| 亚洲日本电影在线| 亚洲精品视频在线看| 亚洲激情在线播放| 亚洲欧洲综合另类| 欧美激情国产日韩| 国产精品理论片在线观看| 亚洲国产欧美一区二区三区久久 | 亚洲永久视频| 在线中文字幕一区| 在线一区视频| 亚洲网站在线看| 亚洲在线视频观看| 亚洲欧美日韩国产综合| 先锋a资源在线看亚洲| 午夜综合激情| 久久亚洲综合| 欧美国产精品一区| 亚洲激情视频在线| 99国产精品久久久久久久久久| 亚洲美女精品一区| 国产精品99久久不卡二区| 亚洲综合精品| 久久精品1区| 美女久久一区| 欧美小视频在线观看| 国产精品综合网站| 激情综合电影网| 日韩视频免费在线| 亚洲免费中文字幕| 久久午夜视频| 亚洲国产成人久久| 中文国产一区| 久久婷婷国产综合尤物精品| 老色批av在线精品| 欧美日韩色综合| 国产在线精品二区| 亚洲精品在线视频观看| 亚洲一区二区三区视频播放| 久久精品综合一区| 91久久夜色精品国产九色| 亚洲综合色丁香婷婷六月图片| 欧美专区一区二区三区| 欧美片第1页综合| 国产亚洲欧美另类一区二区三区| 亚洲国产一区二区三区青草影视| 亚洲深夜激情| 久久亚洲美女| 亚洲精品影院在线观看| 欧美在线地址| 欧美日韩一区在线观看视频| 狠狠干狠狠久久| 亚洲午夜精品视频| 欧美大色视频| 午夜久久资源| 欧美日韩视频在线一区二区观看视频| 国产欧美1区2区3区| 国产精品99久久久久久宅男| 美女主播一区|