• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆-80  評論-24  文章-0  trackbacks-0
            問題:一個大小為n的數組,里面的數有重復,要求找出數量超過一半的那個數。
            傳統方法就不說了,排序然后順序掃描查找,復雜度為O(nlogn + n) = O(nlogn),有些慢。
            《編程之美》上提供的方法是掃描數組,每次消去兩個不相同的數,這樣,到最后剩下的數必定是所求的數,證明非常簡單,略了。
            關鍵問題是編碼,如果寫不好容易些成O(n2)復雜度的,書上的寫法不錯:

             1 int find_messager(int *id, int n) {
             2   assert(id != NULL);
             3   int i;
             4   int times = 1;
             5   int messager = id[0];
             6   for (i = 1; i < n; ++i) {
             7     if (times == 0) {
             8       messager = id[i];
             9       times = 1;
            10     } else {
            11       if (messager == id[i]) {
            12         times++;
            13       } else {
            14         times--;
            15       }
            16     }
            17   }
            18   return messager;
            19 }

            擴展問題來了,如果有三個數,他們各自的總數都查過了n/4,那么怎么找出這三個數呢?
            其實和上面解法類似,只不過是用三個標記就可以了,代碼如下:

             1 struct Messager {
             2   int id[4];
             3 };
             4                                                                                                                   
             5 Messager *find_messagers(int *id, int n) {
             6   assert(id != NULL);
             7   Messager *msgr = new Messager;
             8   memset(msgr, 0, sizeof(Messager));
             9   int times[4] = {0, 0, 0, 0};
            10   int i, j;
            11   for (i = 0; i < n; ++i) {
            12     for (j = 1; j < 4; ++j) {
            13       if (times[j] > 0 && msgr->id[j] == id[i]) {
            14         times[j]++;
            15         break;
            16       }
            17     }
            18 
            19     if (j == 4) {
            20       for (j = 1; j < 4; ++j) {
            21         if (times[j] == 0) {
            22           times[j]++;
            23           msgr->id[j] = id[i];
            24           break;
            25         }
            26       }
            27       if (j == 4) {
            28         times[1]--;
            29         times[2]--;
            30         times[3]--;
            31       }
            32     }
            33   }
            34   return msgr;
            35 }

            這種思想非常清晰,并且實現非常巧妙!
            posted on 2012-09-04 15:06 myjfm 閱讀(624) 評論(0)  編輯 收藏 引用 所屬分類: 算法基礎
            四虎国产精品免费久久5151| 亚洲国产精品无码久久久秋霞2| 2022年国产精品久久久久| 97精品国产91久久久久久| 国产叼嘿久久精品久久| 97久久婷婷五月综合色d啪蜜芽| 中文字幕乱码人妻无码久久| 久久综合狠狠综合久久激情 | 97精品依人久久久大香线蕉97| 精品免费久久久久久久| 久久久国产精华液| 2021久久国自产拍精品| 日本欧美国产精品第一页久久| 久久精品九九亚洲精品| 久久久久亚洲国产| 国产精品欧美久久久久无广告| 色诱久久久久综合网ywww| 国产一区二区精品久久岳 | 91精品婷婷国产综合久久 | 国产精品99精品久久免费| 伊人久久无码精品中文字幕| 久久久国产精品福利免费| 亚洲精品无码久久久久| 国产精品久久久久久久久久影院| 国产精品无码久久综合网| 青青草国产精品久久久久| 久久亚洲欧美国产精品| 狠狠综合久久综合88亚洲| 亚洲国产精品无码久久九九| 精品久久久久久国产牛牛app| 久久精品草草草| 久久免费视频观看| 中文字幕成人精品久久不卡| 99国产精品久久久久久久成人热| 97精品依人久久久大香线蕉97| 久久精品国产亚洲AV不卡| 久久久精品久久久久影院| 久久精品国产免费观看三人同眠| 久久亚洲AV无码精品色午夜麻豆| 久久亚洲精品无码aⅴ大香| 99久久国产亚洲综合精品|