題意:要求建立司令部到各個(gè)歐幾里德平面上的節(jié)點(diǎn),給定可建立的頂點(diǎn)對(duì)(u,v) = u 可建立單向信道至 v ,求司令部形成對(duì)所有節(jié)點(diǎn)的指揮需要的最小建設(shè)花費(fèi)。
算法:最小圖形樹,不解釋~
1
/*
2
Problem: 3164 User: _mTy
3
Memory: 872K Time: 172MS
4
Language: C++ Result: Accepted
5
6
Source Code
7
*/
8
#include<cstdio>
9
#include <cstring>
10
#include<cmath>
11
#define MAXN 120
12
#define inf 1000000000
13
typedef double elem_t;
14
elem_t edmonds(int n,elem_t mat[][MAXN*2],int* pre);
15
int main(){
16
elem_t point[MAXN][2];
17
elem_t mat[MAXN*2][MAXN*2];
18
elem_t res,len;
19
int pre[MAXN];
20
int i,j,n,m,u,v;
21
22
while(scanf("%d%d",&n,&m)!=EOF){
23
for(i=0;i<n;i++) for(j=0;j<n;j++) mat[i][j]=inf;
24
for(i=0;i<n;i++) scanf("%lf%lf",&point[i][0],&point[i][1]);
25
for(i=0;i<m;i++){
26
scanf("%d%d",&u,&v); --u; --v;
27
len = pow(point[u][0]-point[v][0],2)+pow(point[u][1]-point[v][1],2);
28
29
len = sqrt(len);
30
mat[u][v]=len;
31
}
32
33
memset(pre,0,sizeof(pre));
34
pre[0]=-1;
35
res = edmonds(n,mat,pre);
36
if(res<0) printf("poor snoopy\n");
37
else printf("%.2f\n",res);
38
}
39
return 0;
40
}
41
42
//多源最小樹形圖,edmonds算法,鄰接陣形式,復(fù)雜度O(n^3)
43
//返回最小生成樹的長(zhǎng)度,構(gòu)造失敗返回負(fù)值
44
//傳入圖的大小n和鄰接陣mat,不相鄰點(diǎn)邊權(quán)inf
45
//可更改邊權(quán)的類型,pre[]返回樹的構(gòu)造,用父結(jié)點(diǎn)表示
46
//傳入時(shí)pre[]數(shù)組清零,用-1標(biāo)出源點(diǎn)
47
48
elem_t edmonds(int n,elem_t mat[][MAXN*2],int* pre){
49
elem_t ret=0;
50
int c[MAXN*2][MAXN*2],l[MAXN*2],p[MAXN*2],m=n,t,i,j,k;
51
for (i=0;i<n;l[i]=i,i++);
52
do{
53
memset(c,0,sizeof(c)),memset(p,0xff,sizeof(p));
54
for (t=m,i=0;i<m;c[i][i]=1,i++);
55
for (i=0;i<t;i++)
56
if (l[i]==i&&pre[i]!=-1){
57
for (j=0;j<m;j++)
58
if (l[j]==j&&i!=j&&mat[j][i]<inf&&(p[i]==-1||mat[j][i]<mat[p[i]][i]))
59
p[i]=j;
60
if ((pre[i]=p[i])==-1)
61
return -1;
62
if (c[i][p[i]]){
63
for (j=0;j<=m;mat[j][m]=mat[m][j]=inf,j++);
64
for (k=i;l[k]!=m;l[k]=m,k=p[k])
65
for (j=0;j<m;j++)
66
if (l[j]==j){
67
if (mat[j][k]-mat[p[k]][k]<mat[j][m])
68
mat[j][m]=mat[j][k]-mat[p[k]][k];
69
if (mat[k][j]<mat[m][j])
70
mat[m][j]=mat[k][j];
71
}
72
c[m][m]=1,l[m]=m,m++;
73
}
74
for (j=0;j<m;j++)
75
if (c[i][j])
76
for (k=p[i];k!=-1&&l[k]==k;c[k][j]=1,k=p[k]);
77
}
78
}
79
while (t<m);
80
for (;m-->n;pre[k]=pre[m])
81
for (i=0;i<m;i++)
82
if (l[i]==m){
83
for (j=0;j<m;j++)
84
if (pre[j]==m&&mat[i][j]==mat[m][j])
85
pre[j]=i;
86
if (mat[pre[m]][m]==mat[pre[m]][i]-mat[pre[i]][i])
87
k=i;
88
}
89
for (i=0;i<n;i++)
90
if (pre[i]!=-1)
91
ret+=mat[pre[i]][i];
92
return ret;
93
}