• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.2 Feed Ratios

            Feed Ratios

            1998 ACM Finals, Dan Adkins

            Farmer John feeds his cows only the finest mixture of cow food, which has three components: Barley, Oats, and Wheat. While he knows the precise mixture of these easily mixable grains, he can not buy that mixture! He buys three other mixtures of the three grains and then combines them to form the perfect mixture.

            Given a set of integer ratios barley:oats:wheat, find a way to combine them IN INTEGER MULTIPLES to form a mix with some goal ratio x:y:z.

            For example, given the goal 3:4:5 and the ratios of three mixtures:

            1:2:3
            3:7:1
            2:1:2
            
            your program should find some minimum number of integer units (the `mixture') of the first, second, and third mixture that should be mixed together to achieve the goal ratio or print `NONE'. `Minimum number' means the sum of the three non-negative mixture integers is minimized.

            For this example, you can combine eight units of mixture 1, one unit of mixture 2, and five units of mixture 3 to get seven units of the goal ratio:

                8*(1:2:3) + 1*(3:7:1) + 5*(2:1:2) = (21:28:35) = 7*(3:4:5)
            

            Integers in the goal ratio and mixture ratios are all non-negative and smaller than 100 in magnitude. The number of units of each type of feed in the mixture must be less than 100. The mixture ratios are not linear combinations of each other.

            PROGRAM NAME: ratios

            INPUT FORMAT

            Line 1: Three space separated integers that represent the goal ratios
            Line 2..4: Each contain three space separated integers that represent the ratios of the three mixtures purchased.

            SAMPLE INPUT (file ratios.in)

            3 4 5
            1 2 3
            3 7 1
            2 1 2
            

            OUTPUT FORMAT

            The output file should contain one line containing four integers or the word `NONE'. The first three integers should represent the number of units of each mixture to use to obtain the goal ratio. The fourth number should be the multiple of the goal ratio obtained by mixing the initial feed using the first three integers as mixing ratios.

            SAMPLE OUTPUT (file ratios.out)

            8 1 5 7

            Analysis

            This problem seems to be a deoth search problem, which, as a matter of fact, is truly a mathematical problem. This problem can be represented in forms of matrix multiply or a linear equation set.

            Initially, the first line is saved in an array called b[MAX](MAX here is 3, but generally, we can deal with more complicated situations in this way by change the value of MAX).

            What the next MAX lines can do is also and may function better with a MAX-level matrix A[MAX][MAX](squred). Firstly, turn the description into equations:

            \large \left\{\begin{matrix}
a_{00}x_{0}+a_{01}x_{1}+a_{02}x_{2}=b_{0}\\ 
a_{10}x_{0}+a_{11}x_{1}+a_{12}x_{2}=b_{1}\\ 
a_{20}x_{0}+a_{21}x_{1}+a_{22}x_{2}=b_{2}
\end{matrix}\right.
            Later, using matrix to translate it:
             
            \large \begin{pmatrix}
a_{00} & a_{01} & a_{02}\\ 
a_{10} & a_{11} & a_{12}\\ 
a_{20} & a_{21} & a_{22}
\end{pmatrix}.\begin{pmatrix}
x_{0}\\ 
x_{1}\\ 
x_{2}
\end{pmatrix}=\begin{pmatrix}
b_{0}\\ 
b_{1}\\ 
b_{2}
\end{pmatrix}
            It is obvious to find the solution of the equation set by Cramer Law. But I nearly forget to tell you another important thing, which is as important as the mathematical method, is that if det(A) is 0 and not all of the elements in b[MAX] are 0, then the answer is NONE. What's more, as a practical problem, it is unbelievable to find the answer which is negative. Both are the edges to determine whether the answer is avaliable.

            After this, you may be interested in find det(A), and I will describe it in another post.

            Code
            /*
            ID:braytay1
            PROG:ratios
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <cmath>
            #include 
            <fstream>
            #define MAX 3
            #define eps 0.000001
            using namespace std;

            int det(int a[MAX][MAX]){
                
            double s=1;
                
            double tmp[MAX][MAX];
                
            for (int i=0;i<MAX;i++){
                    
            for (int j=0;j<MAX;j++){
                        tmp[i][j]
            =double(a[i][j]);
                    }

                }

                
            for (int k=0;k<MAX-1;k++){
                    
            for (int i=k+1;i<MAX;i++){        
                        
            for (int j=k+1;j<MAX;j++){
                            tmp[i][j]
            -=tmp[i][k]*tmp[k][j]/tmp[k][k];
                        }

                    }

                }

                
            for (int i=0;i<MAX;i++)
                    s
            *=tmp[i][i];
                
            int res;
                res
            =int(s);
                
            if (fabs(s-res)<eps) return res;
                
            else {
                    
            if (res>0return res+1;
                    
            else return res-1;
                }

            }

            int sp_gcd(int a,int b){
                a
            =abs(a);
                b
            =abs(b);
                
            if (a<b) return a==0?b:sp_gcd(b%a,a);
                
            else return b==0?a:sp_gcd(b,a%b);
            }


            int gcd(int a[MAX],int s){
                
            int res;
                res
            =sp_gcd(a[0],a[1]);
                
            for (int i=2;i<MAX;i++){
                    res
            =sp_gcd(res,a[i]);
                }

                res
            =sp_gcd(res,s);
                
            return res;
            }

            int main(){
                ifstream fin(
            "ratios.in");
                ofstream fout(
            "ratios.out");
                
            int A[MAX][MAX],b[MAX],x[MAX];
                
            int k,flag_s=0;
                
            for (int i=0;i<MAX;i++){
                    fin
            >>b[i];
                    
            if (b[i]) flag_s=1;
                }

                
            for (int i=0;i<MAX;i++)
                    
            for (int j=0;j<MAX;j++) fin>>A[j][i];
                k
            =det(A);
                
            if (k==0&&flag_s) cout<<"NONE"<<endl;
                
            else {
                    
            int k_sign;
                    
            if (k>0) k_sign=1;
                    
            else if (k==0) k_sign=0;
                    
            else k_sign=-1;
                    
            for (int i=0;i<MAX;i++){
                        
            int A_tmp[MAX][MAX];
                        
            for (int i1=0;i1<MAX;i1++){
                            
            for (int j1=0;j1<MAX;j1++){
                                
            if (j1==i) A_tmp[i1][j1]=b[i1];
                                
            else A_tmp[i1][j1]=A[i1][j1];
                            }

                        }

                        x[i]
            =det(A_tmp);
                    }


                    
            int div;
                    div
            =gcd(x,k);
                    
            for (int i=0;i<MAX;i++){
                        
            if (x[i]*k_sign<0{
                            fout
            <<"NONE"<<endl;
                            
            return 0;
                        }

                    }

                    
            for (int i=0;i<MAX;i++){
                        x[i]
            =x[i]/div*k_sign;
                        fout
            <<x[i]<<" ";
                    }

                    k
            =k/div*k_sign;
                    fout
            <<k<<endl;
                }

                
            return 0;
            }

            posted on 2008-08-26 00:46 幻浪天空領(lǐng)主 閱讀(389) 評(píng)論(0)  編輯 收藏 引用 所屬分類(lèi): USACO

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(lèi)(23)

            文章檔案(22)

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            91精品国产高清久久久久久国产嫩草 | 三级三级久久三级久久| 99久久99久久久精品齐齐| 久久99国产精品久久99小说| 一级做a爱片久久毛片| 久久综合久久综合久久| 久久精品无码午夜福利理论片| 久久久SS麻豆欧美国产日韩| 2021最新久久久视精品爱| 香蕉久久影院| 亚洲国产精品成人AV无码久久综合影院| 91精品国产91热久久久久福利| 婷婷综合久久中文字幕| 国产精品99久久不卡| 一本久久a久久精品综合夜夜| 国内精品久久久久久久97牛牛| 日韩精品久久无码人妻中文字幕 | 亚洲日本va午夜中文字幕久久 | 亚洲一本综合久久| 亚洲精品国产成人99久久| 国产精品成人99久久久久| 国内精品久久久久久中文字幕| 狠狠久久综合| 久久精品成人欧美大片| 久久久国产精品亚洲一区| 久久综合九色综合97_久久久 | 久久精品国产69国产精品亚洲| 精品一区二区久久| 久久综合亚洲色HEZYO国产| 国产精品久久久香蕉| 91久久婷婷国产综合精品青草 | 色婷婷综合久久久久中文一区二区| 久久久老熟女一区二区三区| 亚洲国产精品久久久久| 亚洲欧美一区二区三区久久| 久久久无码一区二区三区| 亚洲综合精品香蕉久久网97 | 久久久无码精品亚洲日韩京东传媒 | 久久精品一区二区三区AV| 亚洲伊人久久大香线蕉苏妲己| 777午夜精品久久av蜜臀|