• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.2 Feed Ratios

            Feed Ratios

            1998 ACM Finals, Dan Adkins

            Farmer John feeds his cows only the finest mixture of cow food, which has three components: Barley, Oats, and Wheat. While he knows the precise mixture of these easily mixable grains, he can not buy that mixture! He buys three other mixtures of the three grains and then combines them to form the perfect mixture.

            Given a set of integer ratios barley:oats:wheat, find a way to combine them IN INTEGER MULTIPLES to form a mix with some goal ratio x:y:z.

            For example, given the goal 3:4:5 and the ratios of three mixtures:

            1:2:3
            3:7:1
            2:1:2
            
            your program should find some minimum number of integer units (the `mixture') of the first, second, and third mixture that should be mixed together to achieve the goal ratio or print `NONE'. `Minimum number' means the sum of the three non-negative mixture integers is minimized.

            For this example, you can combine eight units of mixture 1, one unit of mixture 2, and five units of mixture 3 to get seven units of the goal ratio:

                8*(1:2:3) + 1*(3:7:1) + 5*(2:1:2) = (21:28:35) = 7*(3:4:5)
            

            Integers in the goal ratio and mixture ratios are all non-negative and smaller than 100 in magnitude. The number of units of each type of feed in the mixture must be less than 100. The mixture ratios are not linear combinations of each other.

            PROGRAM NAME: ratios

            INPUT FORMAT

            Line 1: Three space separated integers that represent the goal ratios
            Line 2..4: Each contain three space separated integers that represent the ratios of the three mixtures purchased.

            SAMPLE INPUT (file ratios.in)

            3 4 5
            1 2 3
            3 7 1
            2 1 2
            

            OUTPUT FORMAT

            The output file should contain one line containing four integers or the word `NONE'. The first three integers should represent the number of units of each mixture to use to obtain the goal ratio. The fourth number should be the multiple of the goal ratio obtained by mixing the initial feed using the first three integers as mixing ratios.

            SAMPLE OUTPUT (file ratios.out)

            8 1 5 7

            Analysis

            This problem seems to be a deoth search problem, which, as a matter of fact, is truly a mathematical problem. This problem can be represented in forms of matrix multiply or a linear equation set.

            Initially, the first line is saved in an array called b[MAX](MAX here is 3, but generally, we can deal with more complicated situations in this way by change the value of MAX).

            What the next MAX lines can do is also and may function better with a MAX-level matrix A[MAX][MAX](squred). Firstly, turn the description into equations:

            \large \left\{\begin{matrix}
a_{00}x_{0}+a_{01}x_{1}+a_{02}x_{2}=b_{0}\\ 
a_{10}x_{0}+a_{11}x_{1}+a_{12}x_{2}=b_{1}\\ 
a_{20}x_{0}+a_{21}x_{1}+a_{22}x_{2}=b_{2}
\end{matrix}\right.
            Later, using matrix to translate it:
             
            \large \begin{pmatrix}
a_{00} & a_{01} & a_{02}\\ 
a_{10} & a_{11} & a_{12}\\ 
a_{20} & a_{21} & a_{22}
\end{pmatrix}.\begin{pmatrix}
x_{0}\\ 
x_{1}\\ 
x_{2}
\end{pmatrix}=\begin{pmatrix}
b_{0}\\ 
b_{1}\\ 
b_{2}
\end{pmatrix}
            It is obvious to find the solution of the equation set by Cramer Law. But I nearly forget to tell you another important thing, which is as important as the mathematical method, is that if det(A) is 0 and not all of the elements in b[MAX] are 0, then the answer is NONE. What's more, as a practical problem, it is unbelievable to find the answer which is negative. Both are the edges to determine whether the answer is avaliable.

            After this, you may be interested in find det(A), and I will describe it in another post.

            Code
            /*
            ID:braytay1
            PROG:ratios
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <cmath>
            #include 
            <fstream>
            #define MAX 3
            #define eps 0.000001
            using namespace std;

            int det(int a[MAX][MAX]){
                
            double s=1;
                
            double tmp[MAX][MAX];
                
            for (int i=0;i<MAX;i++){
                    
            for (int j=0;j<MAX;j++){
                        tmp[i][j]
            =double(a[i][j]);
                    }

                }

                
            for (int k=0;k<MAX-1;k++){
                    
            for (int i=k+1;i<MAX;i++){        
                        
            for (int j=k+1;j<MAX;j++){
                            tmp[i][j]
            -=tmp[i][k]*tmp[k][j]/tmp[k][k];
                        }

                    }

                }

                
            for (int i=0;i<MAX;i++)
                    s
            *=tmp[i][i];
                
            int res;
                res
            =int(s);
                
            if (fabs(s-res)<eps) return res;
                
            else {
                    
            if (res>0return res+1;
                    
            else return res-1;
                }

            }

            int sp_gcd(int a,int b){
                a
            =abs(a);
                b
            =abs(b);
                
            if (a<b) return a==0?b:sp_gcd(b%a,a);
                
            else return b==0?a:sp_gcd(b,a%b);
            }


            int gcd(int a[MAX],int s){
                
            int res;
                res
            =sp_gcd(a[0],a[1]);
                
            for (int i=2;i<MAX;i++){
                    res
            =sp_gcd(res,a[i]);
                }

                res
            =sp_gcd(res,s);
                
            return res;
            }

            int main(){
                ifstream fin(
            "ratios.in");
                ofstream fout(
            "ratios.out");
                
            int A[MAX][MAX],b[MAX],x[MAX];
                
            int k,flag_s=0;
                
            for (int i=0;i<MAX;i++){
                    fin
            >>b[i];
                    
            if (b[i]) flag_s=1;
                }

                
            for (int i=0;i<MAX;i++)
                    
            for (int j=0;j<MAX;j++) fin>>A[j][i];
                k
            =det(A);
                
            if (k==0&&flag_s) cout<<"NONE"<<endl;
                
            else {
                    
            int k_sign;
                    
            if (k>0) k_sign=1;
                    
            else if (k==0) k_sign=0;
                    
            else k_sign=-1;
                    
            for (int i=0;i<MAX;i++){
                        
            int A_tmp[MAX][MAX];
                        
            for (int i1=0;i1<MAX;i1++){
                            
            for (int j1=0;j1<MAX;j1++){
                                
            if (j1==i) A_tmp[i1][j1]=b[i1];
                                
            else A_tmp[i1][j1]=A[i1][j1];
                            }

                        }

                        x[i]
            =det(A_tmp);
                    }


                    
            int div;
                    div
            =gcd(x,k);
                    
            for (int i=0;i<MAX;i++){
                        
            if (x[i]*k_sign<0{
                            fout
            <<"NONE"<<endl;
                            
            return 0;
                        }

                    }

                    
            for (int i=0;i<MAX;i++){
                        x[i]
            =x[i]/div*k_sign;
                        fout
            <<x[i]<<" ";
                    }

                    k
            =k/div*k_sign;
                    fout
            <<k<<endl;
                }

                
            return 0;
            }

            posted on 2008-08-26 00:46 幻浪天空領主 閱讀(384) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久精品国产精品亚洲人人| 99久久精品国产高清一区二区| 久久人妻少妇嫩草AV无码蜜桃| 亚洲欧美久久久久9999 | 久久精品国产91久久麻豆自制| 热re99久久精品国产99热| 国内精品伊人久久久久网站| 久久久久av无码免费网| 色综合久久中文综合网| 久久精品无码一区二区WWW| 9191精品国产免费久久| 亚洲欧洲中文日韩久久AV乱码| 国产综合久久久久| 久久天天躁狠狠躁夜夜2020一| 久久久九九有精品国产| 久久SE精品一区二区| 久久午夜福利电影| 91麻豆精品国产91久久久久久| 久久婷婷五月综合97色直播| 久久成人国产精品二三区| 精品久久久久成人码免费动漫 | 久久久久亚洲AV综合波多野结衣| 亚洲AV无码一区东京热久久| 欧洲国产伦久久久久久久| 99久久精品国产综合一区| 精品久久久噜噜噜久久久| 77777亚洲午夜久久多人| 性高朝久久久久久久久久| 精品水蜜桃久久久久久久| 精品国产一区二区三区久久蜜臀| 青青草原综合久久| 久久99精品国产99久久| 久久久久99精品成人片试看| 2021国产精品午夜久久| 亚洲欧洲精品成人久久奇米网| 狠狠精品久久久无码中文字幕 | 2021国内久久精品| 久久久久青草线蕉综合超碰| 老男人久久青草av高清| 久久精品国产久精国产果冻传媒 | 久久精品国产只有精品66|