• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.2 Feed Ratios

            Feed Ratios

            1998 ACM Finals, Dan Adkins

            Farmer John feeds his cows only the finest mixture of cow food, which has three components: Barley, Oats, and Wheat. While he knows the precise mixture of these easily mixable grains, he can not buy that mixture! He buys three other mixtures of the three grains and then combines them to form the perfect mixture.

            Given a set of integer ratios barley:oats:wheat, find a way to combine them IN INTEGER MULTIPLES to form a mix with some goal ratio x:y:z.

            For example, given the goal 3:4:5 and the ratios of three mixtures:

            1:2:3
            3:7:1
            2:1:2
            
            your program should find some minimum number of integer units (the `mixture') of the first, second, and third mixture that should be mixed together to achieve the goal ratio or print `NONE'. `Minimum number' means the sum of the three non-negative mixture integers is minimized.

            For this example, you can combine eight units of mixture 1, one unit of mixture 2, and five units of mixture 3 to get seven units of the goal ratio:

                8*(1:2:3) + 1*(3:7:1) + 5*(2:1:2) = (21:28:35) = 7*(3:4:5)
            

            Integers in the goal ratio and mixture ratios are all non-negative and smaller than 100 in magnitude. The number of units of each type of feed in the mixture must be less than 100. The mixture ratios are not linear combinations of each other.

            PROGRAM NAME: ratios

            INPUT FORMAT

            Line 1: Three space separated integers that represent the goal ratios
            Line 2..4: Each contain three space separated integers that represent the ratios of the three mixtures purchased.

            SAMPLE INPUT (file ratios.in)

            3 4 5
            1 2 3
            3 7 1
            2 1 2
            

            OUTPUT FORMAT

            The output file should contain one line containing four integers or the word `NONE'. The first three integers should represent the number of units of each mixture to use to obtain the goal ratio. The fourth number should be the multiple of the goal ratio obtained by mixing the initial feed using the first three integers as mixing ratios.

            SAMPLE OUTPUT (file ratios.out)

            8 1 5 7

            Analysis

            This problem seems to be a deoth search problem, which, as a matter of fact, is truly a mathematical problem. This problem can be represented in forms of matrix multiply or a linear equation set.

            Initially, the first line is saved in an array called b[MAX](MAX here is 3, but generally, we can deal with more complicated situations in this way by change the value of MAX).

            What the next MAX lines can do is also and may function better with a MAX-level matrix A[MAX][MAX](squred). Firstly, turn the description into equations:

            \large \left\{\begin{matrix}
a_{00}x_{0}+a_{01}x_{1}+a_{02}x_{2}=b_{0}\\ 
a_{10}x_{0}+a_{11}x_{1}+a_{12}x_{2}=b_{1}\\ 
a_{20}x_{0}+a_{21}x_{1}+a_{22}x_{2}=b_{2}
\end{matrix}\right.
            Later, using matrix to translate it:
             
            \large \begin{pmatrix}
a_{00} & a_{01} & a_{02}\\ 
a_{10} & a_{11} & a_{12}\\ 
a_{20} & a_{21} & a_{22}
\end{pmatrix}.\begin{pmatrix}
x_{0}\\ 
x_{1}\\ 
x_{2}
\end{pmatrix}=\begin{pmatrix}
b_{0}\\ 
b_{1}\\ 
b_{2}
\end{pmatrix}
            It is obvious to find the solution of the equation set by Cramer Law. But I nearly forget to tell you another important thing, which is as important as the mathematical method, is that if det(A) is 0 and not all of the elements in b[MAX] are 0, then the answer is NONE. What's more, as a practical problem, it is unbelievable to find the answer which is negative. Both are the edges to determine whether the answer is avaliable.

            After this, you may be interested in find det(A), and I will describe it in another post.

            Code
            /*
            ID:braytay1
            PROG:ratios
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <cmath>
            #include 
            <fstream>
            #define MAX 3
            #define eps 0.000001
            using namespace std;

            int det(int a[MAX][MAX]){
                
            double s=1;
                
            double tmp[MAX][MAX];
                
            for (int i=0;i<MAX;i++){
                    
            for (int j=0;j<MAX;j++){
                        tmp[i][j]
            =double(a[i][j]);
                    }

                }

                
            for (int k=0;k<MAX-1;k++){
                    
            for (int i=k+1;i<MAX;i++){        
                        
            for (int j=k+1;j<MAX;j++){
                            tmp[i][j]
            -=tmp[i][k]*tmp[k][j]/tmp[k][k];
                        }

                    }

                }

                
            for (int i=0;i<MAX;i++)
                    s
            *=tmp[i][i];
                
            int res;
                res
            =int(s);
                
            if (fabs(s-res)<eps) return res;
                
            else {
                    
            if (res>0return res+1;
                    
            else return res-1;
                }

            }

            int sp_gcd(int a,int b){
                a
            =abs(a);
                b
            =abs(b);
                
            if (a<b) return a==0?b:sp_gcd(b%a,a);
                
            else return b==0?a:sp_gcd(b,a%b);
            }


            int gcd(int a[MAX],int s){
                
            int res;
                res
            =sp_gcd(a[0],a[1]);
                
            for (int i=2;i<MAX;i++){
                    res
            =sp_gcd(res,a[i]);
                }

                res
            =sp_gcd(res,s);
                
            return res;
            }

            int main(){
                ifstream fin(
            "ratios.in");
                ofstream fout(
            "ratios.out");
                
            int A[MAX][MAX],b[MAX],x[MAX];
                
            int k,flag_s=0;
                
            for (int i=0;i<MAX;i++){
                    fin
            >>b[i];
                    
            if (b[i]) flag_s=1;
                }

                
            for (int i=0;i<MAX;i++)
                    
            for (int j=0;j<MAX;j++) fin>>A[j][i];
                k
            =det(A);
                
            if (k==0&&flag_s) cout<<"NONE"<<endl;
                
            else {
                    
            int k_sign;
                    
            if (k>0) k_sign=1;
                    
            else if (k==0) k_sign=0;
                    
            else k_sign=-1;
                    
            for (int i=0;i<MAX;i++){
                        
            int A_tmp[MAX][MAX];
                        
            for (int i1=0;i1<MAX;i1++){
                            
            for (int j1=0;j1<MAX;j1++){
                                
            if (j1==i) A_tmp[i1][j1]=b[i1];
                                
            else A_tmp[i1][j1]=A[i1][j1];
                            }

                        }

                        x[i]
            =det(A_tmp);
                    }


                    
            int div;
                    div
            =gcd(x,k);
                    
            for (int i=0;i<MAX;i++){
                        
            if (x[i]*k_sign<0{
                            fout
            <<"NONE"<<endl;
                            
            return 0;
                        }

                    }

                    
            for (int i=0;i<MAX;i++){
                        x[i]
            =x[i]/div*k_sign;
                        fout
            <<x[i]<<" ";
                    }

                    k
            =k/div*k_sign;
                    fout
            <<k<<endl;
                }

                
            return 0;
            }

            posted on 2008-08-26 00:46 幻浪天空領主 閱讀(390) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            潮喷大喷水系列无码久久精品| 亚洲精品无码久久久久久| 99久久中文字幕| 婷婷综合久久中文字幕| 国产精品青草久久久久福利99| 久久精品国产99久久香蕉| 色综合久久88色综合天天 | 久久九九久精品国产免费直播| 久久久女人与动物群交毛片 | 91精品国产高清久久久久久91| 久久久精品一区二区三区| 九九久久精品国产| 亚洲欧洲日产国码无码久久99| 久久精品www| 亚洲欧洲久久av| 青青青国产成人久久111网站| 污污内射久久一区二区欧美日韩 | 久久人人爽人人爽人人片AV不 | 久久亚洲天堂| 99久久精品免费看国产一区二区三区| 欧洲精品久久久av无码电影| 久久精品国产影库免费看 | 久久久久国产一级毛片高清板| 97精品依人久久久大香线蕉97| 情人伊人久久综合亚洲| 久久人人爽爽爽人久久久| 久久只有这精品99| 国产精品99久久精品爆乳| 久久久久久国产精品无码超碰| 久久伊人中文无码| 97超级碰碰碰碰久久久久| av午夜福利一片免费看久久| 亚洲国产精品无码久久青草| 国产精品亚洲综合专区片高清久久久| 午夜精品久久久久久久久| 久久久久久精品免费免费自慰| 久久久综合香蕉尹人综合网| 久久99精品久久久久久野外| 国产成人综合久久精品尤物| 国产精品99久久久久久宅男| 亚洲午夜久久影院|