• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.3 A Game

            A Game

            IOI'96 - Day 1

            Consider the following two-player game played with a sequence of N positive integers (2 <= N <= 100) laid onto a game board. Player 1 starts the game. The players move alternately by selecting a number from either the left or the right end of the sequence. That number is then deleted from the board, and its value is added to the score of the player who selected it. A player wins if his sum is greater than his opponents.

            Write a program that implements the optimal strategy. The optimal strategy yields maximum points when playing against the "best possible" opponent. Your program must further implement an optimal strategy for player 2.

            PROGRAM NAME: game1

            INPUT FORMAT

            Line 1: N, the size of the board
            Line 2-etc: N integers in the range (1..200) that are the contents of the game board, from left to right

            SAMPLE INPUT (file game1.in)

            6
            4 7 2 9
            5 2
            

            OUTPUT FORMAT

            Two space-separated integers on a line: the score of Player 1 followed by the score of Player 2.

            SAMPLE OUTPUT (file game1.out)

            18 11
            

            Analysis

            A typical game theory problem. The problem aims to find a solution for two players, which impletement optimal strategy for player 2. Considering the fact of only two operations for each step, making dynamic programming is helpful for these. F[i][j] is defined as the maximum sum for player 1 when choosing numbers among range [i,j], and s[i][j] stands for the sum of numbers among ith number and jth number. After all, new an array num[i] to store numbers.
            Then, considering the two activities in choosing, which can only be happened for numbers of the first and the last one. Since the description needs an optimal strategy for player two, it is reasonable for maximum the result.
            After all, the function can be presented below: f[i][j]=max{num[i]+sum[i+1][j]-f[i+1][j],num[j]+sum[i][j-1]-f[i][j-1]}, 1<=i,j<=n.
            Initialization: f[i][i]=num[i], 1<=i<=n.
            Tips in calculating: just only two variables: x,k. "j" is better fixed by x+k for f[i][j] is fully determined by f[i+1][j] and f[i][j-1], which are turing into f[x+1][x+k] and f[x][x+k-1]. It is obvious to making the first "for loop" of k and the next one is "x". Otherwise, i and j are too flexible to make loops.

            Code

            /*
            ID:braytay1
            PROG:game1
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            using namespace std;

            int n;
            int f[100][100],num[100],sum,s[100][100];

            int max(int a,int b){
                
            return a>b?a:b;
            }


            int main(){
                ifstream fin(
            "game1.in");
                ofstream fout(
            "game1.out");
                fin
            >>n;
                
            for(int i=0;i<n;i++) fin>>num[i];
                memset(f,
            0,sizeof f);
                memset(s,
            0,sizeof s);
                
            for(int i=0;i<n;i++) f[i][i]=num[i];
                
            for(int i=0;i<n;i++)
                    
            for(int j=0;j<n;j++)
                        
            for(int k=i;k<=j;k++)
                            s[i][j]
            +=num[k];
                
            for(int k=1;k<n;k++)
                    
            for(int x=0;x+k<n;x++)        
                        f[x][x
            +k]=max(num[x]+s[x+1][x+k]-f[x+1][x+k],num[x+k]+s[x][x+k-1]-f[x][x+k-1]);
                fout
            <<f[0][n-1]<<" "<<s[0][n-1]-f[0][n-1]<<endl;
                
            return 0;
            }


             

            posted on 2008-09-01 16:36 幻浪天空領主 閱讀(237) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久精品国产一区二区| 奇米影视7777久久精品| 久久婷婷国产综合精品| 天堂久久天堂AV色综合| 久久狠狠色狠狠色综合| 欧美久久久久久精选9999| 亚洲国产精品成人久久蜜臀| 国产成人久久激情91| 亚洲?V乱码久久精品蜜桃| 久久丫精品国产亚洲av| 色噜噜狠狠先锋影音久久| 亚洲伊人久久综合影院| 久久精品国产亚洲AV无码麻豆 | 久久人人爽人人爽人人片AV高清| 欧美精品丝袜久久久中文字幕| 一本久久知道综合久久| 亚洲中文字幕无码久久精品1| 2020最新久久久视精品爱| 午夜不卡久久精品无码免费| 久久国产精品偷99| 天天综合久久久网| 香蕉久久久久久狠狠色| 久久国产香蕉视频| 久久精品国产69国产精品亚洲| 久久精品国产男包| 一级a性色生活片久久无少妇一级婬片免费放| 久久精品国产亚洲AV嫖农村妇女| 久久AAAA片一区二区| 国产精品女同一区二区久久| 久久99国产精品久久99| 久久精品人人做人人爽97| 欧美精品国产综合久久| 少妇无套内谢久久久久| 久久久久综合国产欧美一区二区| 精品国产婷婷久久久| 91精品国产91久久久久久| 国产一区二区三区久久| 久久亚洲欧美日本精品| 99久久精品费精品国产| 久久精品?ⅴ无码中文字幕| 久久久99精品一区二区|