• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.3 A Game

            A Game

            IOI'96 - Day 1

            Consider the following two-player game played with a sequence of N positive integers (2 <= N <= 100) laid onto a game board. Player 1 starts the game. The players move alternately by selecting a number from either the left or the right end of the sequence. That number is then deleted from the board, and its value is added to the score of the player who selected it. A player wins if his sum is greater than his opponents.

            Write a program that implements the optimal strategy. The optimal strategy yields maximum points when playing against the "best possible" opponent. Your program must further implement an optimal strategy for player 2.

            PROGRAM NAME: game1

            INPUT FORMAT

            Line 1: N, the size of the board
            Line 2-etc: N integers in the range (1..200) that are the contents of the game board, from left to right

            SAMPLE INPUT (file game1.in)

            6
            4 7 2 9
            5 2
            

            OUTPUT FORMAT

            Two space-separated integers on a line: the score of Player 1 followed by the score of Player 2.

            SAMPLE OUTPUT (file game1.out)

            18 11
            

            Analysis

            A typical game theory problem. The problem aims to find a solution for two players, which impletement optimal strategy for player 2. Considering the fact of only two operations for each step, making dynamic programming is helpful for these. F[i][j] is defined as the maximum sum for player 1 when choosing numbers among range [i,j], and s[i][j] stands for the sum of numbers among ith number and jth number. After all, new an array num[i] to store numbers.
            Then, considering the two activities in choosing, which can only be happened for numbers of the first and the last one. Since the description needs an optimal strategy for player two, it is reasonable for maximum the result.
            After all, the function can be presented below: f[i][j]=max{num[i]+sum[i+1][j]-f[i+1][j],num[j]+sum[i][j-1]-f[i][j-1]}, 1<=i,j<=n.
            Initialization: f[i][i]=num[i], 1<=i<=n.
            Tips in calculating: just only two variables: x,k. "j" is better fixed by x+k for f[i][j] is fully determined by f[i+1][j] and f[i][j-1], which are turing into f[x+1][x+k] and f[x][x+k-1]. It is obvious to making the first "for loop" of k and the next one is "x". Otherwise, i and j are too flexible to make loops.

            Code

            /*
            ID:braytay1
            PROG:game1
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            using namespace std;

            int n;
            int f[100][100],num[100],sum,s[100][100];

            int max(int a,int b){
                
            return a>b?a:b;
            }


            int main(){
                ifstream fin(
            "game1.in");
                ofstream fout(
            "game1.out");
                fin
            >>n;
                
            for(int i=0;i<n;i++) fin>>num[i];
                memset(f,
            0,sizeof f);
                memset(s,
            0,sizeof s);
                
            for(int i=0;i<n;i++) f[i][i]=num[i];
                
            for(int i=0;i<n;i++)
                    
            for(int j=0;j<n;j++)
                        
            for(int k=i;k<=j;k++)
                            s[i][j]
            +=num[k];
                
            for(int k=1;k<n;k++)
                    
            for(int x=0;x+k<n;x++)        
                        f[x][x
            +k]=max(num[x]+s[x+1][x+k]-f[x+1][x+k],num[x+k]+s[x][x+k-1]-f[x][x+k-1]);
                fout
            <<f[0][n-1]<<" "<<s[0][n-1]-f[0][n-1]<<endl;
                
            return 0;
            }


             

            posted on 2008-09-01 16:36 幻浪天空領主 閱讀(237) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            亚洲欧洲久久久精品| 久久精品国产第一区二区三区 | 青青国产成人久久91网| 久久综合中文字幕| 久久香综合精品久久伊人| 青青草原精品99久久精品66| 亚洲伊人久久大香线蕉苏妲己| 伊人久久国产免费观看视频| 久久精品国产99国产精品澳门| 午夜精品久久久久久| 国产精品久久久久jk制服| 亚洲第一永久AV网站久久精品男人的天堂AV | 手机看片久久高清国产日韩| 久久中文骚妇内射| 色综合久久久久综合99| 精品乱码久久久久久夜夜嗨| 国产精品毛片久久久久久久 | 久久久久久亚洲精品影院| 国内精品久久九九国产精品| 久久久久久国产精品无码超碰| 久久久久久毛片免费看| 99久久婷婷国产一区二区| 色欲久久久天天天综合网| 久久人与动人物a级毛片| 狠狠色丁香婷婷综合久久来来去| 国产欧美久久一区二区| 99久久久精品| www.久久热| 久久亚洲精品中文字幕三区| 久久综合噜噜激激的五月天| 久久久SS麻豆欧美国产日韩| 久久天天躁狠狠躁夜夜2020一| 久久乐国产综合亚洲精品| 久久人人爽人人爽人人片AV麻烦 | www.久久热.com| 亚洲精品高清国产一久久| 热久久这里只有精品| 久久精品这里只有精99品| 亚州日韩精品专区久久久| 久久亚洲精品无码aⅴ大香| 久久99久久99精品免视看动漫|