• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.3 A Game

            A Game

            IOI'96 - Day 1

            Consider the following two-player game played with a sequence of N positive integers (2 <= N <= 100) laid onto a game board. Player 1 starts the game. The players move alternately by selecting a number from either the left or the right end of the sequence. That number is then deleted from the board, and its value is added to the score of the player who selected it. A player wins if his sum is greater than his opponents.

            Write a program that implements the optimal strategy. The optimal strategy yields maximum points when playing against the "best possible" opponent. Your program must further implement an optimal strategy for player 2.

            PROGRAM NAME: game1

            INPUT FORMAT

            Line 1: N, the size of the board
            Line 2-etc: N integers in the range (1..200) that are the contents of the game board, from left to right

            SAMPLE INPUT (file game1.in)

            6
            4 7 2 9
            5 2
            

            OUTPUT FORMAT

            Two space-separated integers on a line: the score of Player 1 followed by the score of Player 2.

            SAMPLE OUTPUT (file game1.out)

            18 11
            

            Analysis

            A typical game theory problem. The problem aims to find a solution for two players, which impletement optimal strategy for player 2. Considering the fact of only two operations for each step, making dynamic programming is helpful for these. F[i][j] is defined as the maximum sum for player 1 when choosing numbers among range [i,j], and s[i][j] stands for the sum of numbers among ith number and jth number. After all, new an array num[i] to store numbers.
            Then, considering the two activities in choosing, which can only be happened for numbers of the first and the last one. Since the description needs an optimal strategy for player two, it is reasonable for maximum the result.
            After all, the function can be presented below: f[i][j]=max{num[i]+sum[i+1][j]-f[i+1][j],num[j]+sum[i][j-1]-f[i][j-1]}, 1<=i,j<=n.
            Initialization: f[i][i]=num[i], 1<=i<=n.
            Tips in calculating: just only two variables: x,k. "j" is better fixed by x+k for f[i][j] is fully determined by f[i+1][j] and f[i][j-1], which are turing into f[x+1][x+k] and f[x][x+k-1]. It is obvious to making the first "for loop" of k and the next one is "x". Otherwise, i and j are too flexible to make loops.

            Code

            /*
            ID:braytay1
            PROG:game1
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            using namespace std;

            int n;
            int f[100][100],num[100],sum,s[100][100];

            int max(int a,int b){
                
            return a>b?a:b;
            }


            int main(){
                ifstream fin(
            "game1.in");
                ofstream fout(
            "game1.out");
                fin
            >>n;
                
            for(int i=0;i<n;i++) fin>>num[i];
                memset(f,
            0,sizeof f);
                memset(s,
            0,sizeof s);
                
            for(int i=0;i<n;i++) f[i][i]=num[i];
                
            for(int i=0;i<n;i++)
                    
            for(int j=0;j<n;j++)
                        
            for(int k=i;k<=j;k++)
                            s[i][j]
            +=num[k];
                
            for(int k=1;k<n;k++)
                    
            for(int x=0;x+k<n;x++)        
                        f[x][x
            +k]=max(num[x]+s[x+1][x+k]-f[x+1][x+k],num[x+k]+s[x][x+k-1]-f[x][x+k-1]);
                fout
            <<f[0][n-1]<<" "<<s[0][n-1]-f[0][n-1]<<endl;
                
            return 0;
            }


             

            posted on 2008-09-01 16:36 幻浪天空領主 閱讀(234) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年5月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久久久亚洲AV无码专区首JN | 久久精品一区二区三区不卡| 97精品伊人久久久大香线蕉 | 久久人人妻人人爽人人爽| 亚洲精品无码久久千人斩| 97r久久精品国产99国产精| 国产叼嘿久久精品久久| 伊人久久大香线蕉AV一区二区| 久久棈精品久久久久久噜噜| 国产 亚洲 欧美 另类 久久| 久久亚洲AV无码精品色午夜| 国产香蕉97碰碰久久人人| 久久无码AV中文出轨人妻| 久久99久久无码毛片一区二区| 久久精品天天中文字幕人妻| 久久久无码精品亚洲日韩京东传媒 | 99久久99这里只有免费的精品| 久久久久99精品成人片欧美| 久久精品国产黑森林| 久久久久成人精品无码中文字幕 | 久久一日本道色综合久久| 久久国产福利免费| 国内精品伊人久久久久| 无码人妻久久一区二区三区免费丨 | 亚洲精品无码久久久久sm| 国产国产成人久久精品| 久久人人爽人人人人片av| 久久本道久久综合伊人| 国産精品久久久久久久| 久久综合中文字幕| 国产精品青草久久久久福利99| 婷婷综合久久中文字幕| 日本精品久久久久中文字幕8 | 91精品国产色综合久久| 性做久久久久久久| 亚洲乱码中文字幕久久孕妇黑人| 精品久久久无码21p发布| 欧美一区二区三区久久综| 国内精品久久久久影院日本| 嫩草伊人久久精品少妇AV| 97久久精品午夜一区二区|