• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO Section 3.1 Shaping Regions

            Shaping Regions

            N opaque rectangles (1 <= N <= 1000) of various colors are placed on a white sheet of paper whose size is A wide by B long. The rectangles are put with their sides parallel to the sheet's borders. All rectangles fall within the borders of the sheet so that different figures of different colors will be seen.

            The coordinate system has its origin (0,0) at the sheet's lower left corner with axes parallel to the sheet's borders.

            PROGRAM NAME: rect1

            INPUT FORMAT

            The order of the input lines dictates the order of laying down the rectangles. The first input line is a rectangle "on the bottom".
            Line 1: A, B, and N, space separated (1 <= A,B <= 10,000)
            Lines 2-N+1: Five integers: llx, lly, urx, ury, color: the lower left coordinates and upper right coordinates of the rectangle whose color is `color' (1 <= color <= 2500) to be placed on the white sheet. The color 1 is the same color of white as the sheet upon which the rectangles are placed.

            SAMPLE INPUT (file rect1.in)

            20 20 3
            2 2 18 18 2
            0 8 19 19 3
            8 0 10 19 4
            

            INPUT EXPLANATION

            Note that the rectangle delineated by 0,0 and 2,2 is two units wide and two high. Here's a schematic diagram of the input:

            11111111111111111111
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            33333333443333333331
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11222222442222222211
            11111111441111111111
            11111111441111111111
            

            The '4's at 8,0 to 10,19 are only two wide, not three (i.e., the grid contains a 4 and 8,0 and a 4 and 8,1 but NOT a 4 and 8,2 since this diagram can't capture what would be shown on graph paper).

            OUTPUT FORMAT

            The output file should contain a list of all the colors that can be seen along with the total area of each color that can be seen (even if the regions of color are disjoint), ordered by increasing color. Do not display colors with no area.

            SAMPLE OUTPUT (file rect1.out)

            1 91
            2 84
            3 187
            4 38
            Shaping Regions: Hint
            An array of all 'points' is too big; 16MB maximum. Keep track of the rectangles' coordinates; split the rectangle when an overlap occurs, e.g.: 
            +--------+      +-+--+--+
            |        |      | |2 |  |
            |        |      + +--+  |
            |  +-+   |  --> | |  |  |
            |  +-+   |      |1|  |3 |
            |        |      | +--+  |
            |        |      | | 4|  |
            +--------+      +-+--+--+
             
            Official analysis

            A straightforward approach to this problem would be to make an array which represents the table, and then draw all the rectangles on it. In the end, the program can just count the colors from the array and output them. Unfortunately, the maximum dimensions of this problem are 10,000 x 10,000, which means the program uses 100 million integers. That's too much, so we need another approach.

            An approach that does work for such large cases (and it actually is a lot faster too) is to keep track of the rectangles, and delete portions of them when they are covered by other rectangles. 
            Consider this input set: 
            0 0 10 10 5
            5 0 15 10 10
            

            The program first reads in the first rectangle and puts it in a list. When it reads a new rectangle it checks all items in the list if they overlap with the new rectangle. This is the case, and then it deletes the old rectangle from the list and adds all parts which aren't covered to the list. (So in this case, the program would delete the first rectangle, add 0 0 5 10 5 to the list and then add the second rectangle to the list). `` If you're unlucky, a new rectangle can create lots of new rectangles (when the new rectangle entirely fits into another one, the program creates four new rectangles which represent the leftover border:

            +--------+      +-+--+--+
            |        |      | |2 |  |
            |        |      + +--+  |
            |  +-+   |  --> | |  |  |
            |  +-+   |      |1|  |3 |
            |        |      | +--+  |
            |        |      | | 4|  |
            +--------+      +-+--+--+

            This is not a problem however, because there can be only 2500 rectangles and there is plenty of memory, so rectangles have to be cut very much to run out of memory. Note that with this approach, the only thing that matters is how many rectangles there are and how often they overlap. The maximum dimensions can be as large as you want, it doesn't matter for the running time.

            There is another solution to this problem, which runs in O(n*n*log n) time, but is quite tricky. First, we add one big white rectangle at the bottom - the paper. Then we make two arrays: one containing all vertical edges of the rectangles, and the other the horizontal ones. For each edge we have its coordinates and remember, whether it's the left or right edge (top or bottom). We sort these edges from left to right and from top to bottom. Then we go from left to right (sweep), jumping to every x-coordinate of vertical edges. At each step we update the set of rectangles seen. We also want to update the amount of each color seen so far. So for each x we go from top to bottom, for each y updating the set of rectagles at a point (in the structure described below) and choosing the top one, so that we can update the amounts of colors seen. The structure to hold the set of rectangles at a point should allow adding a rectangle (number from 1..1000), deleting a rectangle, and finding the top one. We can implement these operations in O(log n) time if we use a heap. To make adding and deleting run in O(log n) we must also have for each rectangle its position in the heap. So the total time spent at each point is O(log n). Thus the algorithm works in O(n*n*log n) time.

            Official Code

             

            #include <stdio.h>
            #include 
            <stdlib.h>
            #include 
            <string.h>

            FILE 
            *fp,*fo;

            struct rect
            {
                
            int c;
                
            int x1,y1,x2,y2;
            }
            ;

            int c[2501];
            rect r[
            10001];

            int intersect(rect a,const rect &b,rect out[4])
            {
                
            /* do they at all intersect? */
                
            if(b.x2<a.x1||b.x1>=a.x2)
                    
            return 0;
                
            if(b.y2<a.y1||b.y1>=a.y2)
                    
            return 0;
                
            /* they do */

                rect t;

                
            if(b.x1<=a.x1&&b.x2>=a.x2&&b.y1<=a.y1&&b.y2>=a.y2)
                        
            return -1;

                
            /* cutting `a' down to match b */
                
            int nout=0;
                
            if(b.x1>=a.x1) {
                    t
            =a,t.x2=b.x1;
                    
            if(t.x1!=t.x2)
                        
            out[nout++]=t;
                    a.x1
            =b.x1;
                }

                
            if(b.x2<a.x2) {
                    t
            =a,t.x1=b.x2;
                    
            if(t.x1!=t.x2)
                        
            out[nout++]=t;
                    a.x2
            =b.x2;
                }

                
            if(b.y1>=a.y1) {
                    t
            =a,t.y2=b.y1;
                    
            if(t.y1!=t.y2)
                        
            out[nout++]=t;
                    a.y1
            =b.y1;
                }

                
            if(b.y2<a.y2) {
                    t
            =a,t.y1=b.y2;
                    
            if(t.y1!=t.y2)
                        
            out[nout++]=t;
                    a.y2
            =b.y2;
                }

                
            return nout;
            }


            int main(void{
                fp
            =fopen("rect1.in","rt");
                fo
            =fopen("rect1.out","wt");

                
            int a,b,n;
                fscanf(fp,
            "%d %d %d",&a,&b,&n);

                r[
            0].c=1;
                r[
            0].x1=r[0].y1=0;
                r[
            0].x2=a;
                r[
            0].y2=b;

                rect t[
            4];

                
            int i,j,rr=1;
                
            for(i=0;i<n;i++{
                    
            int tmp;
                    fscanf(fp,
            "%d %d %d %d %d",&r[rr].x1,&r[rr].y1,&r[rr].x2,&r[rr].y2,&r[rr].c);

                    
            if(r[rr].x1>r[rr].x2) {
                        tmp
            =r[rr].x1;
                        r[rr].x1
            =r[rr].x2;
                        r[rr].x2
            =tmp;
                    }

                    
            if(r[rr].y1>r[rr].y2) {
                        tmp
            =r[rr].y1;
                        r[rr].y1
            =r[rr].y2;
                        r[rr].y2
            =tmp;
                    }


                    
            int nr=rr;
                    rect curr
            =r[rr++];
                    
            for(j=0;j<nr;j++{
                        
            int n=intersect(r[j],curr,t);
                        
            if(!n)
                            
            continue;
                        
            if(n==-1{
                            memmove(r
            +j,r+j+1,sizeof(rect)*(rr-j-1));
                            j
            --;
                            rr
            --;
                            nr
            --;
                            
            continue;
                        }

                        r[j]
            =t[--n];
                        
            for(;n-->0;)
                            r[rr
            ++]=t[n];
                    }

                }


                
            for(i=0;i<rr;i++)
                    c[r[i].c]
            +=(r[i].x2-r[i].x1)*(r[i].y2-r[i].y1);

                
            for(i=1;i<=2500;i++)
                    
            if(c[i])
                        fprintf(fo,
            "%d %d\n",i,c[i]);

                
            return 0;
            }


            My Code


            /*
            ID:braytay1
            PROG:rect1
            mble
            LANG:C++
            */

            #include 
            <iostream>
            #include 
            <fstream>
            using namespace std;

            struct rectangle{
                
            int lx;
                
            int ly;
                
            int rx;
                
            int ry;
                
            int color;
            }
            ;

            int A,B,N;
            int xs[2002],ys[2002];
            int area[2501];
            rectangle rec[
            1001];

            void swap(int *p1,int *p2){
                
            int tmp;
                tmp
            =*p1;
                
            *p1=*p2;
                
            *p2=tmp;
            }

            int partition(int a[],int p,int r){
                
            int x,i;
                x
            =a[r];
                i
            =p-1;
                
            for (int j=p;j<r;j++)
                
            {
                    
            if (a[j]<=x) {i++;swap(a+i,a+j);}
                }

                swap(a
            +i+1,a+r);
                
            return i+1;
            }

            void quicksort(int a[],int p,int r){
                
            if (p<r)
                
            {
                    
            int q;
                    q
            =partition(a,p,r);
                    quicksort(a,p,q
            -1);
                    quicksort(a,q
            +1,r);
                }

            }




            int color_num(rectangle &a){
                
            for (int i=N;i>=0;i--){
                    
            if ((a.lx>=rec[i].lx)&&(a.rx<=rec[i].rx)&&(a.ly>=rec[i].ly)&&(a.ry<=rec[i].ry))
                        
            return rec[i].color;
                }

                
            return 1;
            }

            int reform(int *p,int n){
                
            int tmp[2002],cur_num;
                tmp[
            0]=*p;
                cur_num
            =0;
                
            for (int i=1;i<=n;i++){
                    
            if (tmp[cur_num]!=*(p+i)) {
                        cur_num
            ++;
                        tmp[cur_num]
            =*(p+i);
                    }

                }

                
            for (int i=0;i<=n;i++*(p+i)=0;
                
            for (int i=0;i<=cur_num;i++*(p+i)=tmp[i];
                
            return cur_num;
            }

            int main(){
                ifstream fin(
            "rect1.in");
                ofstream fout(
            "rect1.out");
                memset(area,
            0,sizeof(area));
                fin
            >>A>>B>>N;
                rec[
            0].lx=0;rec[0].ly=0;rec[0].rx=A;rec[0].ry=B;rec[0].color=1;
                xs[
            0]=0;xs[1]=A;ys[0]=0;ys[1]=B;
                
            for (int i=1;i<=N;i++){
                    fin
            >>rec[i].lx>>rec[i].ly>>rec[i].rx>>rec[i].ry>>rec[i].color;
                    xs[i
            *2]=rec[i].lx;
                    xs[i
            *2+1]=rec[i].rx;
                    ys[i
            *2]=rec[i].ly;
                    ys[i
            *2+1]=rec[i].ry;
                }

                
            int xlong,ylong;
                quicksort(xs,
            0,2*N+1);
                quicksort(ys,
            0,2*N+1);
                xlong
            =reform(xs,2*N+1);
                ylong
            =reform(ys,2*N+1);
                quicksort(xs,
            0,xlong);
                quicksort(ys,
            0,ylong);
                
            int k=0;
                
            for (int i=0;i<ylong;i++){
                    
            for (int j=0;j<xlong;j++){
                        rectangle single;
                        
            if (xs[j]==xs[j+1]||ys[i]==ys[i+1]) continue;
                        single.lx
            =xs[j];single.ly=ys[i];single.rx=xs[j+1];single.ry=ys[i+1];
                        single.color
            =color_num(single);
                        area[single.color
            -1]+=(single.rx-single.lx)*(single.ry-single.ly);
                    }

                }

                
            for (int i=0;i<2500;i++)
                    
            if (area[i]) fout<<i+1<<" "<<area[i]<<endl;
                
            return 0;
            }

            posted on 2008-08-21 18:11 幻浪天空領主 閱讀(599) 評論(0)  編輯 收藏 引用 所屬分類: USACO

            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            一本色道久久综合亚洲精品| 91久久精品91久久性色| 久久久久亚洲AV成人网人人软件| 精品久久综合1区2区3区激情| 国产午夜福利精品久久| 一级做a爰片久久毛片看看| 久久精品国产亚洲av麻豆色欲 | 久久亚洲日韩看片无码| 久久天天躁狠狠躁夜夜96流白浆 | 大香伊人久久精品一区二区| 久久无码人妻一区二区三区| 久久国产精品一区| 久久精品国产亚洲av影院| 性做久久久久久久久浪潮| 久久精品中文騷妇女内射| 久久久精品久久久久特色影视| 国产美女亚洲精品久久久综合| 狠狠精品干练久久久无码中文字幕| 国产成人综合久久精品红| 久久久国产精品| 91性高湖久久久久| 国产亚洲欧美精品久久久| 日韩人妻无码一区二区三区久久99| 91精品国产91久久久久久蜜臀| 欧美日韩精品久久久久 | 久久99精品国产麻豆宅宅| 久久久久亚洲AV综合波多野结衣| 国产精品久久久久久一区二区三区| 热久久视久久精品18| 亚洲а∨天堂久久精品9966| 国产福利电影一区二区三区久久老子无码午夜伦不 | 亚洲人成无码网站久久99热国产| 亚洲精品高清久久| 情人伊人久久综合亚洲| 国产综合久久久久| 精品免费tv久久久久久久| 久久99精品久久久久久久久久 | 亚洲国产精品人久久| 国产2021久久精品| 人人狠狠综合久久亚洲| 伊人色综合久久天天人守人婷|