• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Way of C++

              C++博客 :: 首頁 :: 聯系 :: 聚合  :: 管理
              55 Posts :: 0 Stories :: 19 Comments :: 0 Trackbacks

            公告

            The first time i use this blog, i will write something that i learn which i think is worth write down.

            常用鏈接

            留言簿(3)

            我參與的團隊

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

               Bipartite graph is the graph which include two sets(name X,and Y) and every edge in the graph has the rule that one point is in X,the other is in  Y. The mostly problem is finding the Maximum Bipartite Matching, which mean find the maximum edges in the case of keeping  the points of the edges only connecting to one edge. The other problem is the perfect matching, which means that all the vector of the graph is included in the match edges. And the solution to find the minimum number of vectors ( either in X and Y) making every edge connecting to these vectors is called the minimum coverage . Usually, we have the equation that " minimum coverage number = maximum bipartite matching". There is another problem called maximum independent set problem. This problem request to find the maximum number of M(the number of vector) which there are no edges connect to in the graph that contain N vectors. This problem can be transformed into the maximum bipartite matching problem if the conditions can be satisfied. And we have the result that " the maximum independent set vector number M= N- Maximum bipartite matching number ".
               One way to solve the maximum bipartite matching problem is the method which is called Hungary Algorithm. There are many problems in the POJ which can be solved by Hungary Algorithm as long as it's a maximum tipartite mathcing or can be transformed into.  As an example ,you can view the problem discription in the link  . The following is my code. (link:  http://acm.pku.edu.cn/JudgeOnline/problem?id=1325)
                Plz forgive my poor written English, but everyone improve it by making mistake and attempting ,right? -_-

             1
             2#include<stdio.h>
             3#include<string.h>
             4#include<iostream>
             5using namespace std;
             6const int MAX= 110;
             7int u,v,k;//u:the left node number,v:the right node number
             8bool c[MAX][MAX];//c[i][j] indicate that i of left connect to the j of right, begin with 0
             9
            10int um[MAX],vm[MAX];//um[i] indicate the j of the right that connect to i, they are matched . so is vm[j]
            11bool s[MAX];//s[j] check whether j of the right has been used in one round of finding the path
            12
            13bool Find(int u){
            14    int j;
            15    for(j=1;j<v;j++){
            16        if(c[u][j]&&!s[j]){
            17            s[j]=true;
            18            if(!vm[j]||Find(vm[j])){
            19                um[u]=j;
            20                vm[j]=u;
            21                return true;
            22            }
            23        }
            24    }
            25    return false;
            26}
            27                
            28
            29int Match(){
            30    memset(um,0,sizeof(um));
            31    memset(vm,0,sizeof(vm));
            32    int ret=0;
            33    int i;
            34    for(i=1;i<u;i++)
            35        if(!um[i]){
            36            memset(s,false,sizeof(s));
            37            if(Find(i))
            38                ret++;
            39        }
            40    
            41    return ret;
            42}
            43
            44
            45int main(){
            46    
            47    while(scanf("%d%d%d",&u,&v,&k)&&u){
            48        memset(c,0,sizeof(c));
            49        int i,a,b,d;
            50        for(i=0;i<k;i++){
            51            scanf("%d%d%d",&a,&b,&d);
            52            if(b&&d)
            53                c[b][d]=1;
            54        }
            55        printf("%d\n",Match());
            56    }
            57    return 1;
            58}


               

            posted on 2007-12-21 14:53 koson 閱讀(2210) 評論(2)  編輯 收藏 引用 所屬分類: DataStruct And Algorithm

            Feedback

            # re: Maximum Bipartite Matching 2007-12-21 18:22 winsty
            好標準的匈牙利
            贊一個!  回復  更多評論
              

            # re: Maximum Bipartite Matching 2007-12-22 11:51 在線軟件
            不錯..
            但是我不是很懂啊  回復  更多評論
              

            色综合久久中文字幕综合网| 色婷婷久久综合中文久久蜜桃av | 久久久久亚洲?V成人无码| 国产福利电影一区二区三区久久老子无码午夜伦不 | 久久99精品久久久久久噜噜| 久久综合亚洲色HEZYO社区| 久久66热人妻偷产精品9| 日韩久久无码免费毛片软件| 思思久久精品在热线热| 久久久无码一区二区三区 | 久久国产乱子伦免费精品| 久久精品嫩草影院| 久久国产精品99国产精| 狠狠色丁香婷婷综合久久来来去 | 久久综合久久综合久久| 国产亚洲欧美精品久久久| 久久毛片免费看一区二区三区| 精品久久久久久中文字幕| 中文成人无码精品久久久不卡| 狠狠色综合网站久久久久久久| 亚洲va久久久噜噜噜久久男同| 2019久久久高清456| 狠狠精品久久久无码中文字幕| 久久久久无码精品国产| 2021国产精品久久精品| 欧美激情精品久久久久久久九九九 | 久久精品一区二区三区中文字幕| 久久婷婷五月综合色高清| 囯产精品久久久久久久久蜜桃 | 少妇内射兰兰久久| 色8激情欧美成人久久综合电| 狠狠色综合网站久久久久久久| 久久久久成人精品无码中文字幕 | 亚洲精品国产美女久久久| 久久综合伊人77777| 久久涩综合| 久久人妻少妇嫩草AV蜜桃| 久久综合九色综合久99| 久久精品成人免费观看97| 久久WWW免费人成—看片| 草草久久久无码国产专区|