• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Way of C++

              C++博客 :: 首頁 :: 聯系 :: 聚合  :: 管理
              55 Posts :: 0 Stories :: 19 Comments :: 0 Trackbacks

            公告

            The first time i use this blog, i will write something that i learn which i think is worth write down.

            常用鏈接

            留言簿(3)

            我參與的團隊

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

               Bipartite graph is the graph which include two sets(name X,and Y) and every edge in the graph has the rule that one point is in X,the other is in  Y. The mostly problem is finding the Maximum Bipartite Matching, which mean find the maximum edges in the case of keeping  the points of the edges only connecting to one edge. The other problem is the perfect matching, which means that all the vector of the graph is included in the match edges. And the solution to find the minimum number of vectors ( either in X and Y) making every edge connecting to these vectors is called the minimum coverage . Usually, we have the equation that " minimum coverage number = maximum bipartite matching". There is another problem called maximum independent set problem. This problem request to find the maximum number of M(the number of vector) which there are no edges connect to in the graph that contain N vectors. This problem can be transformed into the maximum bipartite matching problem if the conditions can be satisfied. And we have the result that " the maximum independent set vector number M= N- Maximum bipartite matching number ".
               One way to solve the maximum bipartite matching problem is the method which is called Hungary Algorithm. There are many problems in the POJ which can be solved by Hungary Algorithm as long as it's a maximum tipartite mathcing or can be transformed into.  As an example ,you can view the problem discription in the link  . The following is my code. (link:  http://acm.pku.edu.cn/JudgeOnline/problem?id=1325)
                Plz forgive my poor written English, but everyone improve it by making mistake and attempting ,right? -_-

             1
             2#include<stdio.h>
             3#include<string.h>
             4#include<iostream>
             5using namespace std;
             6const int MAX= 110;
             7int u,v,k;//u:the left node number,v:the right node number
             8bool c[MAX][MAX];//c[i][j] indicate that i of left connect to the j of right, begin with 0
             9
            10int um[MAX],vm[MAX];//um[i] indicate the j of the right that connect to i, they are matched . so is vm[j]
            11bool s[MAX];//s[j] check whether j of the right has been used in one round of finding the path
            12
            13bool Find(int u){
            14    int j;
            15    for(j=1;j<v;j++){
            16        if(c[u][j]&&!s[j]){
            17            s[j]=true;
            18            if(!vm[j]||Find(vm[j])){
            19                um[u]=j;
            20                vm[j]=u;
            21                return true;
            22            }
            23        }
            24    }
            25    return false;
            26}
            27                
            28
            29int Match(){
            30    memset(um,0,sizeof(um));
            31    memset(vm,0,sizeof(vm));
            32    int ret=0;
            33    int i;
            34    for(i=1;i<u;i++)
            35        if(!um[i]){
            36            memset(s,false,sizeof(s));
            37            if(Find(i))
            38                ret++;
            39        }
            40    
            41    return ret;
            42}
            43
            44
            45int main(){
            46    
            47    while(scanf("%d%d%d",&u,&v,&k)&&u){
            48        memset(c,0,sizeof(c));
            49        int i,a,b,d;
            50        for(i=0;i<k;i++){
            51            scanf("%d%d%d",&a,&b,&d);
            52            if(b&&d)
            53                c[b][d]=1;
            54        }
            55        printf("%d\n",Match());
            56    }
            57    return 1;
            58}


               

            posted on 2007-12-21 14:53 koson 閱讀(2225) 評論(2)  編輯 收藏 引用 所屬分類: DataStruct And Algorithm

            Feedback

            # re: Maximum Bipartite Matching 2007-12-21 18:22 winsty
            好標準的匈牙利
            贊一個!  回復  更多評論
              

            # re: Maximum Bipartite Matching 2007-12-22 11:51 在線軟件
            不錯..
            但是我不是很懂啊  回復  更多評論
              

            亚洲国产精品久久久久网站| 欧美粉嫩小泬久久久久久久| 一本大道久久a久久精品综合| 国产成人精品久久二区二区| 麻豆亚洲AV永久无码精品久久| 少妇精品久久久一区二区三区| 久久青草国产精品一区| 久久男人中文字幕资源站| 无码国内精品久久人妻| 久久久久99精品成人片| 99久久国产宗和精品1上映| 久久99久国产麻精品66| 99久久精品国产麻豆| 久久久久免费精品国产| 精品久久久无码人妻中文字幕豆芽| 国产成人精品综合久久久| 久久精品亚洲中文字幕无码麻豆| 国产成人精品久久| 久久影院综合精品| 国产V亚洲V天堂无码久久久| 少妇内射兰兰久久| 国产精品美女久久久久 | 久久成人18免费网站| 97久久国产亚洲精品超碰热 | 亚洲性久久久影院| 色综合久久综精品| 久久国产美女免费观看精品 | 中文国产成人精品久久亚洲精品AⅤ无码精品 | 久久久久亚洲AV无码去区首| 99精品久久精品一区二区| 亚洲va中文字幕无码久久| 久久亚洲AV无码西西人体| 手机看片久久高清国产日韩| 国产精品久久婷婷六月丁香| 爱做久久久久久| 伊人久久精品无码av一区| 亚洲国产成人精品女人久久久| 久久精品久久久久观看99水蜜桃| 91精品免费久久久久久久久| 性欧美丰满熟妇XXXX性久久久| 久久久久噜噜噜亚洲熟女综合 |