• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Way of C++

              C++博客 :: 首頁(yè) :: 聯(lián)系 :: 聚合  :: 管理
              55 Posts :: 0 Stories :: 19 Comments :: 0 Trackbacks

            公告

            The first time i use this blog, i will write something that i learn which i think is worth write down.

            常用鏈接

            留言簿(3)

            我參與的團(tuán)隊(duì)

            搜索

            •  

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

               Bipartite graph is the graph which include two sets(name X,and Y) and every edge in the graph has the rule that one point is in X,the other is in  Y. The mostly problem is finding the Maximum Bipartite Matching, which mean find the maximum edges in the case of keeping  the points of the edges only connecting to one edge. The other problem is the perfect matching, which means that all the vector of the graph is included in the match edges. And the solution to find the minimum number of vectors ( either in X and Y) making every edge connecting to these vectors is called the minimum coverage . Usually, we have the equation that " minimum coverage number = maximum bipartite matching". There is another problem called maximum independent set problem. This problem request to find the maximum number of M(the number of vector) which there are no edges connect to in the graph that contain N vectors. This problem can be transformed into the maximum bipartite matching problem if the conditions can be satisfied. And we have the result that " the maximum independent set vector number M= N- Maximum bipartite matching number ".
               One way to solve the maximum bipartite matching problem is the method which is called Hungary Algorithm. There are many problems in the POJ which can be solved by Hungary Algorithm as long as it's a maximum tipartite mathcing or can be transformed into.  As an example ,you can view the problem discription in the link  . The following is my code. (link:  http://acm.pku.edu.cn/JudgeOnline/problem?id=1325)
                Plz forgive my poor written English, but everyone improve it by making mistake and attempting ,right? -_-

             1
             2#include<stdio.h>
             3#include<string.h>
             4#include<iostream>
             5using namespace std;
             6const int MAX= 110;
             7int u,v,k;//u:the left node number,v:the right node number
             8bool c[MAX][MAX];//c[i][j] indicate that i of left connect to the j of right, begin with 0
             9
            10int um[MAX],vm[MAX];//um[i] indicate the j of the right that connect to i, they are matched . so is vm[j]
            11bool s[MAX];//s[j] check whether j of the right has been used in one round of finding the path
            12
            13bool Find(int u){
            14    int j;
            15    for(j=1;j<v;j++){
            16        if(c[u][j]&&!s[j]){
            17            s[j]=true;
            18            if(!vm[j]||Find(vm[j])){
            19                um[u]=j;
            20                vm[j]=u;
            21                return true;
            22            }
            23        }
            24    }
            25    return false;
            26}
            27                
            28
            29int Match(){
            30    memset(um,0,sizeof(um));
            31    memset(vm,0,sizeof(vm));
            32    int ret=0;
            33    int i;
            34    for(i=1;i<u;i++)
            35        if(!um[i]){
            36            memset(s,false,sizeof(s));
            37            if(Find(i))
            38                ret++;
            39        }
            40    
            41    return ret;
            42}
            43
            44
            45int main(){
            46    
            47    while(scanf("%d%d%d",&u,&v,&k)&&u){
            48        memset(c,0,sizeof(c));
            49        int i,a,b,d;
            50        for(i=0;i<k;i++){
            51            scanf("%d%d%d",&a,&b,&d);
            52            if(b&&d)
            53                c[b][d]=1;
            54        }
            55        printf("%d\n",Match());
            56    }
            57    return 1;
            58}


               

            posted on 2007-12-21 14:53 koson 閱讀(2213) 評(píng)論(2)  編輯 收藏 引用 所屬分類: DataStruct And Algorithm

            Feedback

            # re: Maximum Bipartite Matching 2007-12-21 18:22 winsty
            好標(biāo)準(zhǔn)的匈牙利
            贊一個(gè)!  回復(fù)  更多評(píng)論
              

            # re: Maximum Bipartite Matching 2007-12-22 11:51 在線軟件
            不錯(cuò)..
            但是我不是很懂啊  回復(fù)  更多評(píng)論
              

            精品久久久久一区二区三区| 亚洲AV日韩AV天堂久久| 国产成人精品久久| 91久久精品国产免费直播| 久久久噜噜噜久久熟女AA片| 日本久久久久久久久久| 久久男人中文字幕资源站| 久久久久国产精品| 色综合久久综合网观看| 久久久久国产一级毛片高清版| 亚洲狠狠婷婷综合久久蜜芽| 精品久久久久久久久免费影院| 香蕉99久久国产综合精品宅男自 | 久久男人AV资源网站| 99久久精品国产一区二区| 久久精品国产99国产电影网| 久久99国产综合精品| 国产成人综合久久综合| 久久国产热精品波多野结衣AV| 久久99精品国产自在现线小黄鸭| 亚洲国产精品久久电影欧美| 久久亚洲AV成人无码国产| 日本欧美久久久久免费播放网 | 亚洲AV无码久久寂寞少妇| 国产精品久久久久a影院| 人妻丰满?V无码久久不卡| 久久九九免费高清视频 | 久久久久久久91精品免费观看| 一97日本道伊人久久综合影院| 久久亚洲日韩看片无码| 日韩av无码久久精品免费| 亚洲精品乱码久久久久久蜜桃图片| 久久无码高潮喷水| 久久99国内精品自在现线| 久久国产午夜精品一区二区三区| 中文字幕久久亚洲一区| 久久水蜜桃亚洲av无码精品麻豆| 97精品国产91久久久久久| 91精品久久久久久无码| AAA级久久久精品无码区| 丁香五月网久久综合|