• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Way of C++

              C++博客 :: 首頁 :: 聯系 :: 聚合  :: 管理
              55 Posts :: 0 Stories :: 19 Comments :: 0 Trackbacks

            公告

            The first time i use this blog, i will write something that i learn which i think is worth write down.

            常用鏈接

            留言簿(3)

            我參與的團隊

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

               Bipartite graph is the graph which include two sets(name X,and Y) and every edge in the graph has the rule that one point is in X,the other is in  Y. The mostly problem is finding the Maximum Bipartite Matching, which mean find the maximum edges in the case of keeping  the points of the edges only connecting to one edge. The other problem is the perfect matching, which means that all the vector of the graph is included in the match edges. And the solution to find the minimum number of vectors ( either in X and Y) making every edge connecting to these vectors is called the minimum coverage . Usually, we have the equation that " minimum coverage number = maximum bipartite matching". There is another problem called maximum independent set problem. This problem request to find the maximum number of M(the number of vector) which there are no edges connect to in the graph that contain N vectors. This problem can be transformed into the maximum bipartite matching problem if the conditions can be satisfied. And we have the result that " the maximum independent set vector number M= N- Maximum bipartite matching number ".
               One way to solve the maximum bipartite matching problem is the method which is called Hungary Algorithm. There are many problems in the POJ which can be solved by Hungary Algorithm as long as it's a maximum tipartite mathcing or can be transformed into.  As an example ,you can view the problem discription in the link  . The following is my code. (link:  http://acm.pku.edu.cn/JudgeOnline/problem?id=1325)
                Plz forgive my poor written English, but everyone improve it by making mistake and attempting ,right? -_-

             1
             2#include<stdio.h>
             3#include<string.h>
             4#include<iostream>
             5using namespace std;
             6const int MAX= 110;
             7int u,v,k;//u:the left node number,v:the right node number
             8bool c[MAX][MAX];//c[i][j] indicate that i of left connect to the j of right, begin with 0
             9
            10int um[MAX],vm[MAX];//um[i] indicate the j of the right that connect to i, they are matched . so is vm[j]
            11bool s[MAX];//s[j] check whether j of the right has been used in one round of finding the path
            12
            13bool Find(int u){
            14    int j;
            15    for(j=1;j<v;j++){
            16        if(c[u][j]&&!s[j]){
            17            s[j]=true;
            18            if(!vm[j]||Find(vm[j])){
            19                um[u]=j;
            20                vm[j]=u;
            21                return true;
            22            }
            23        }
            24    }
            25    return false;
            26}
            27                
            28
            29int Match(){
            30    memset(um,0,sizeof(um));
            31    memset(vm,0,sizeof(vm));
            32    int ret=0;
            33    int i;
            34    for(i=1;i<u;i++)
            35        if(!um[i]){
            36            memset(s,false,sizeof(s));
            37            if(Find(i))
            38                ret++;
            39        }
            40    
            41    return ret;
            42}
            43
            44
            45int main(){
            46    
            47    while(scanf("%d%d%d",&u,&v,&k)&&u){
            48        memset(c,0,sizeof(c));
            49        int i,a,b,d;
            50        for(i=0;i<k;i++){
            51            scanf("%d%d%d",&a,&b,&d);
            52            if(b&&d)
            53                c[b][d]=1;
            54        }
            55        printf("%d\n",Match());
            56    }
            57    return 1;
            58}


               

            posted on 2007-12-21 14:53 koson 閱讀(2197) 評論(2)  編輯 收藏 引用 所屬分類: DataStruct And Algorithm

            Feedback

            # re: Maximum Bipartite Matching 2007-12-21 18:22 winsty
            好標準的匈牙利
            贊一個!  回復  更多評論
              

            # re: Maximum Bipartite Matching 2007-12-22 11:51 在線軟件
            不錯..
            但是我不是很懂啊  回復  更多評論
              

            色欲久久久天天天综合网精品 | 狠狠久久亚洲欧美专区| 久久国产免费直播| 国产精品一区二区久久| 久久人人爽人人爽人人AV东京热| 国产精品久久久久久久久软件| 久久久久久久综合日本| 久久影院午夜理论片无码| 狠狠色综合久久久久尤物| 久久国产精品偷99| 久久久久女教师免费一区| 欧美性猛交xxxx免费看久久久| 久久久久久毛片免费看| 伊人色综合九久久天天蜜桃| 人妻无码精品久久亚瑟影视| 色综合久久无码五十路人妻| 精品国产一区二区三区久久| 国产精品99久久久久久董美香| 超级碰久久免费公开视频| 久久精品国产亚洲AV不卡| 亚洲精品乱码久久久久久不卡| 久久精品aⅴ无码中文字字幕不卡| 亚洲熟妇无码另类久久久 | 欧美大香线蕉线伊人久久| 国产精品美女久久久m| 久久最近最新中文字幕大全| 久久久久久毛片免费看| 无码人妻久久一区二区三区免费丨| 久久精品中文闷骚内射| 99久久伊人精品综合观看| 久久精品aⅴ无码中文字字幕不卡| 69久久精品无码一区二区| 日本加勒比久久精品| 日产精品99久久久久久| 久久av高潮av无码av喷吹| 久久国产免费直播| 久久精品国产99久久久香蕉| 久久亚洲中文字幕精品有坂深雪| 久久99精品国产麻豆婷婷| 日本人妻丰满熟妇久久久久久| 女同久久|