引言
CRC的全稱為Cyclic Redundancy
Check,中文名稱為循環冗余校驗。它是一類重要的線性分組碼,編碼和解碼方法簡單,檢錯和糾錯能力強,在通信領域廣泛地用于實現差錯控制。實際上,除
數據通信外,CRC在其它很多領域也是大有用武之地的。例如我們讀軟盤上的文件,以及解壓一個ZIP文件時,偶爾會碰到“Bad
CRC”錯誤,由此它在數據存儲方面的應用可略見一斑。
差錯控制理論是在代數理論基礎上建立起來的。這里我們著眼于介紹CRC的算法與實現,對原理只能捎帶說明一下。若需要進一步了解線性碼、分組碼、循環碼、糾錯編碼等方面的原理,可以閱讀有關資料。
利用CRC進行檢錯的過程可簡單描述為:在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的r位監督
碼(CRC碼),附在原始信息后邊,構成一個新的二進制碼序列數共k+r位,然后發送出去。在接收端,根據信息碼和CRC碼之間所遵循的規則進行檢驗,以
確定傳送中是否出錯。這個規則,在差錯控制理論中稱為“生成多項式”。
1 代數學的一般性算法
在代數編碼理論中,將一個碼組表示為一個多項式,碼組中各碼元當作多項式的系數。例如 1100101 表示為 1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。
設編碼前的原始信息多項式為P(x),P(x)的最高冪次加1等于k;生成多項式為G(x),G(x)的最高冪次等于r;CRC多項式為R(x);編碼后的帶CRC的信息多項式為T(x)。
發送方編碼方法:將P(x)乘以xr(即對應的二進制碼序列左移r位),再除以G(x),所得余式即為R(x)。用公式表示為 T(x)=xrP(x)+R(x)
接收方解碼方法:將T(x)除以G(x),如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤。
舉例來說,設信息碼為1100,生成多項式為1011,即P(x)=x3+x2,G(x)=x3+x+1,計算CRC的過程為
xrP(x) x3(x3+x2) x6+x5 x -------- = ---------- = -------- = (x3+x2+x) + -------- G(x) x3+x+1 x3+x+1 x3+x+1
即 R(x)=x。注意到G(x)最高冪次r=3,得出CRC為010。
如果用豎式除法,計算過程為
1110 ------- 1011 /1100000 (1100左移3位) 1011 ---- 1110 1011 ----- 1010 1011 ----- 0010 0000 ---- 010
因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010
如果傳輸無誤,
T(x) x6+x5+x ------ = --------- = x3+x2+x, G(x) x3+x+1
無余式。回頭看一下上面的豎式除法,如果被除數是1100010,顯然在商第三個1時,就能除盡。
上述推算過程,有助于我們理解CRC的概念。但直接編程來實現上面的算法,不僅繁瑣,效率也不高。實際上在工程中不會直接這樣去計算和驗證CRC。
下表中列出了一些見于標準的CRC資料:
名稱
|
生成多項式
|
簡記式*
|
應用舉例
|
CRC-4
|
x4+x+1
|
|
ITU G.704
|
CRC-12
|
x12+x11+x3+x+1
|
|
|
CRC-16
|
x16+x12+x2+1
|
1005
|
IBM SDLC
|
CRC-ITU**
|
x16+x12+x5+1
|
1021
|
ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS
|
CRC-32
|
x32+x26+x23+...+x2+x+1
|
04C11DB7
|
ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS
|
CRC-32c
|
x32+x28+x27+...+x8+x6+1
|
1EDC6F41
|
SCTP
|
* 生成多項式的最高冪次項系數是固定的1,故在簡記式中,將最高的1統一去掉了,如04C11DB7實際上是104C11DB7。 ** 前稱CRC-CCITT。ITU的前身是CCITT。
|
4.CRC算法的實現
---------------
要用程序實現CRC算法,考慮對第2節的長除法做一下變換,依然是M = 11100110,G = 1011,
其系數r為3。
11001100 11100110000
------------- 1011
1011 )11100110000 -----------
1011....... 1010110000
----....... 1010110000
1010...... 1011
1011...... ===> -----------
----...... 001110000
1110... 1110000
1011... 1011
----... -----------
1010.. 101000
1011.. 101000
---- 1011
100 <---校驗碼 -----------
00100
100 <---校驗碼
程序可以如下實現:
1)將Mx^r的前r位放入一個長度為r的寄存器;
2)如果寄存器的首位為1,將寄存器左移1位(將Mx^r剩下部分的MSB移入寄存器的LSB),
再與G的后r位異或,否則僅將寄存器左移1位(將Mx^r剩下部分的MSB移入寄存器的LSB);
3)重復第2步,直到M全部Mx^r移入寄存器;
4)寄存器中的值則為校驗碼。
用CRC16-CCITT的生成多項式0x1021,其C代碼(本文所有代碼假定系統為32位,且都在VC6上
編譯通過)如下:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
int i, j;
unsigned short crc_reg;
crc_reg = (message[0] << 8) + message[1];
for (i = 0; i < len; i++)
{
if (i < len - 2)
for (j = 0; j <= 7; j++)
{
if ((short)crc_reg < 0)
crc_reg = ((crc_reg << 1) + (message[i + 2] >> (7 - i))) ^ 0x1021;
else
crc_reg = (crc_reg << 1) + (message[i + 2] >> (7 - i));
}
else
for (j = 0; j <= 7; j++)
{
if ((short)crc_reg < 0)
crc_reg = (crc_reg << 1) ^ 0x1021;
else
crc_reg <<= 1;
}
}
return crc_reg;
}
顯然,每次內循環的行為取決于寄存器首位。由于異或運算滿足交換率和結合律,以及與0異
或無影響,消息可以不移入寄存器,而在每次內循環的時候,寄存器首位再與對應的消息位
異或。改進的代碼如下:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
int i, j;
unsigned short crc_reg = 0;
unsigned short current;
for (i = 0; i < len; i++)
{
current = message[i] << 8;
for (j = 0; j < 8; j++)
{
if ((short)(crc_reg ^ current) < 0)
crc_reg = (crc_reg << 1) ^ 0x1021;
else
crc_reg <<= 1;
current <<= 1;
}
}
return crc_reg;
}
以上的討論中,消息的每個字節都是先傳輸MSB,CRC16-CCITT標準卻是按照先傳輸LSB,消息
右移進寄存器來計算的。只需將代碼改成判斷寄存器的LSB,將0x1021按位顛倒后(0x8408)與
寄存器異或即可,如下所示:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
int i, j;
unsigned short crc_reg = 0;
unsigned short current;
for (i = 0; i < len; i++)
{
current = message[i];
for (j = 0; j < 8; j++)
{
if ((crc_reg ^ current) & 0x0001)
crc_reg = (crc_reg >> 1) ^ 0x8408;
else
crc_reg >>= 1;
current >>= 1;
}
}
return crc_reg;
}
該算法使用了兩層循環,對消息逐位進行處理,這樣效率是很低的。為了提高時間效率,通
常的思想是以空間換時間。考慮到內循環只與當前的消息字節和crc_reg的低字節有關,對該
算法做以下等效轉換:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
int i, j;
unsigned short crc_reg = 0;
unsigned char index;
unsigned short to_xor;
for (i = 0; i < len; i++)
{
index = (crc_reg ^ message[i]) & 0xff;
to_xor = index;
for (j = 0; j < 8; j++)
{
if (to_xor & 0x0001)
to_xor = (to_xor >> 1) ^ 0x8408;
else
to_xor >>= 1;
}
crc_reg = (crc_reg >> 8) ^ to_xor;
}
return crc_reg;
}
現在內循環只與index相關了,可以事先以數組形式生成一個表crc16_ccitt_table,使得
to_xor = crc16_ccitt_table[index],于是可以簡化為:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
unsigned short crc_reg = 0;
while (len--)
crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ *message++) & 0xff];
return crc_reg;
}
crc16_ccitt_table通過以下代碼生成:
int main()
{
unsigned char index = 0;
unsigned short to_xor;
int i;
printf("unsigned short crc16_ccitt_table[256] =\n{");
while (1)
{
if (!(index % 8))
printf("\n");
to_xor = index;
for (i = 0; i < 8; i++)
{
if (to_xor & 0x0001)
to_xor = (to_xor >> 1) ^ 0x8408;
else
to_xor >>= 1;
}
printf("0x%04x", to_xor);
if (index == 255)
{
printf("\n");
break;
}
else
{
printf(", ");
index++;
}
}
printf("};");
return 0;
}
生成的表如下:
unsigned short crc16_ccitt_table[256] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
這樣對于消息unsigned char message[len],校驗碼為:
unsigned short code = do_crc(message, len);
并且按以下方式發送出去:
message[len] = code & 0x00ff;
message[len + 1] = (code >> 8) & 0x00ff;
接收端對收到的len + 2字節執行do_crc,如果沒有差錯發生則結果應為0。
在一些傳輸協議中,發送端并不指出消息長度,而是采用結束標志,考慮以下幾種差錯:
1)在消息之前,增加1個或多個0字節;
2)消息以1個或多個連續的0字節開始,丟掉1個或多個0;
3)在消息(包括校驗碼)之后,增加1個或多個0字節;
4)消息(包括校驗碼)以1個或多個連續的0字節結尾,丟掉1個或多個0;
顯然,這幾種差錯都檢測不出來,其原因就是如果寄存器值為0,處理0消息字節(或位),寄
存器值不變。為了解決前2個問題,只需寄存器的初值非0即可,對do_crc作以下改進:
unsigned short do_crc(unsigned short reg_init, unsigned char *message, unsigned int len)
{
unsigned short crc_reg = reg_init;
while (len--)
crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ *message++) & 0xff];
return crc_reg;
}
在CRC16-CCITT標準中reg_init = 0xffff,為了解決后2個問題,在CRC16-CCITT標準中將計
算出的校驗碼與0xffff進行異或,即:
unsigned short code = do_crc(0xffff, message, len);
code ^= 0xffff;
message[len] = code & 0x00ff;
message[len + 1] = (code >> 8) & 0x00ff;
顯然,現在接收端對收到的所有字節執行do_crc,如果沒有差錯發生則結果應為某一常值
GOOD_CRC。其滿足以下關系:
unsigned char p[]= {0xff, 0xff};
GOOD_CRC = do_crc(0, p, 2);
其結果為GOOD_CRC = 0xf0b8。
posted on 2010-07-30 17:34
小果子 閱讀(630)
評論(0) 編輯 收藏 引用 所屬分類:
單片機