• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            CG@CPPBLOG

            /*=========================================*/
            隨筆 - 76, 文章 - 39, 評論 - 137, 引用 - 0
            數(shù)據(jù)加載中……

            我的SICP習(xí)題答案(1.11~1.13)

            1.11
            遞歸計算過程為
            (define func-recu
              (lambda(n)
                (cond ((< n 
            3) n)
                      (else (+ (func-recu (- n 
            1))
                               (* 
            2 (func-recu (- n 2)))
                               (* 
            3 (func-recu (- n 3))))))))
            迭代計算過程為
            (define func-iter
              (lambda(a b c n)
                (if (
            = n 0)
                    a
                    (func-iter b c (+ (* 
            3 a) (* 2 b) c) (- n 1)))))

            (define (func n) (func-iter 
            0 1 2 n))

            1.12
            中文版原題翻譯有誤,應(yīng)為計算pascal三角中的元素。
            ;pas(n,k)
            ;
            if (k=1) or (k=n), then pas(n,k) = 1
            ;
            else pas(n,k) = pas(n-1,k-1) + pas(n-1,k)

            (define pas (lambda(n k)
                          (if (or (
            = k 1) (= k n))
                              
            1
                              (+ (pas (- n 
            1) (- k 1))
                                 (pas (- n 
            1) k)))))

            1.13
            中文版原題翻譯遺漏 提示 :ψ=(1-√5)/2
            已知,φ^2 = φ + 1, 那么 φ^n = φ^(n-1) + φ^(n-2)

            同理,
            ψ^2 = ψ + 1, 那么 ψ^n = ψ^(n-1) + ψ^(n-2)
            φ-ψ = (1+√5)/2 - (1-√5)/2 = √5

            when n=0, Fib(0) = 0 =
            (φ^0-ψ^0)/√5
            when n=1, Fib(1) = 1 = √5/√5 = (φ-ψ)/√5
            when n>2, Fib(n) = Fib(n-1) + Fib(n-2) = (φ^(n-1)-ψ^(n-1))/
            √5 + (φ^(n-2)-ψ^(n-2))/√5
                             = ((
            φ^(n-1)+(φ^(n-2))) - (ψ^(n-1)+ψ^(n-2)))/√5
                             = (φ^n - ψ^n)/√5

            又 -1<
            ψ < 0, 故 -0.5< -1/
            √5< ψ^n/√5 < 1/√5 <0.5 , 而 φ^n/√5 = ψ^n/√5 + Fib(n)

            可知 |
            φ^n/√5 - Fib(n)| < 0.5, Fib(n)是最接近φ^n/√5的整數(shù)。


            posted on 2008-03-12 23:10 cuigang 閱讀(1471) 評論(0)  編輯 收藏 引用 所屬分類: Lisp/Scheme我的SICP答案

            91久久精品91久久性色| 精品久久人人妻人人做精品| 一本色道久久88综合日韩精品 | 久久婷婷五月综合色高清| 浪潮AV色综合久久天堂| 精品久久一区二区| 亚洲精品视频久久久| 久久精品国产网红主播| 久久性生大片免费观看性| 国产香蕉久久精品综合网| 久久久亚洲欧洲日产国码aⅴ| 亚洲国产精品久久久久婷婷软件 | 国产精品美女久久久免费| 性做久久久久久久久老女人| 日韩精品久久无码中文字幕| 国产精品午夜久久| 精品熟女少妇av免费久久| 日韩久久久久中文字幕人妻| 国产成人精品久久一区二区三区| 久久亚洲国产精品123区| 97精品国产91久久久久久| 亚洲AV伊人久久青青草原| 国产精品成人无码久久久久久 | 国产精品VIDEOSSEX久久发布| 久久精品国产99国产精品导航 | 热久久国产精品| 亚洲va久久久噜噜噜久久| 无码人妻久久一区二区三区蜜桃| 精品久久久久久综合日本| 久久久无码一区二区三区| 7777精品伊人久久久大香线蕉| 超级碰久久免费公开视频| 久久96国产精品久久久| 久久这里只有精品首页| 武侠古典久久婷婷狼人伊人| 国内精品久久久久久久久电影网| 91久久精品91久久性色| 国产欧美一区二区久久| 久久不射电影网| 国产高清美女一级a毛片久久w | 亚洲人成无码网站久久99热国产|