• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

             

            威佐夫博奕(Wythoff Game):

               有兩堆各若干個物品,兩個人輪流從某一堆或同時從兩堆中取同樣多的物品,規定每次至少取一個,多者不限,最后取光者得勝.

            這種情況下是頗為復雜的.我們用(ak,bk)(ak bk ,k=0,1,2,...,n)表示兩堆物品的數量并稱其為局勢,如果甲面對(0,0),那么甲已經輸了,這種局勢我們稱為奇異局勢.前幾個奇異局勢是:(0,0)、(1,2)、(3,5)(4,7)、(6,10)(8,13)、(9,15)、(11,18)(12,20).

            l         可以看出,a0=b0=0,ak是未在前面出現過的最小自然數, bk= ak + k,奇異局勢有如下三條性質

            1、任何自然數都包含在一個且僅有一個奇異局勢中.

            由于ak是未在前面出現過的最小自然數,所以有ak > ak-1 , bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 .所以性質1.成立.

            2、任意操作都可將奇異局勢變為非奇異局勢.

            事實上,若只改變奇異局勢(ak,bk)的某一個分量,那么另一個分量不可能在其他奇異局勢中,所以必然是非奇異局勢.如果使(ak,bk)的兩個分量同時減少,則由于其差不變,且不可能是其他奇異局勢的差,因此也是非奇異局勢.

            3、采用適當的方法,可以將非奇異局勢變為奇異局勢.

            假設面對的局勢是(a,b), b = a,則同時從兩堆中取走 a 個物體,就變為了奇異局勢(0,0);如果a = ak ,b > bk,那么,取走b - bk個物體,即變為奇異局勢;如果 a = ak , b < bk ,則同時從兩堆中拿走 ak - ab - ak個物體,變為奇異局勢( ab - ak , ab - ak+ b - ak);如果a > ak ,b= ak + k,則從第一堆中拿走多余的數量a - ak 即可;如果a < ak ,b= ak + k,分兩種情況,第一種,a=aj (j < k),從第二堆里面拿走 b - bj 即可;第二種,a=bj (j < k),從第二堆里面拿走 b - aj 即可.

            從如上性質可知,兩個人如果都采用正確操作,那么面對非奇異局勢,先拿者必勝;反之,則后拿者取勝.

            l         那么任給一個局勢(a,b),怎樣判斷它是不是奇異局勢呢?我們有如下公式:

            ak =[k(1+5)/2], bk= ak + k (k=0,1,2,...,n 方括號表示取整函數)

            奇妙的是其中出現了黃金分割數(1+5)/2 = 1.618...,因此,ak,bk組成的矩形近似為黃金矩形,由于2/(1+5)=(5-1)/2,可以先求出j=[a(5-1)/2],a=[j(1+5)/2],那么a = a[j],b[j] = a[j] + j,若不等于,那么a = a[j+1],b[j+1] = a[j+1]+ (j + 1),若都不是,那么就不是奇異局勢.然后再按照上述法則進行,一定會遇到奇異局勢.
            摘自(http://hi.baidu.com/zhulei632/blog/item/657efefaf299b1dbb58f3152.html

            poj 1067 有奇異局勢的判斷

             

             

            posted on 2009-04-18 09:57 閱讀(1005) 評論(3)  編輯 收藏 引用 所屬分類: algorithm

            評論:
            # re: 威佐夫博奕(Wythoff Game) 2009-09-02 16:29 | 學習中
            牛X  回復  更多評論
              
            # re: 威佐夫博奕(Wythoff Game) 2009-09-02 16:33 | Feedback
            黃金分割比那個怎么證的?  回復  更多評論
              
            # re: 威佐夫博奕(Wythoff Game) 2009-09-22 10:48 | cdy20
            @Feedback
            我也是知其然 不知其所以然
              回復  更多評論
              
            久久精品国产亚洲一区二区三区 | 日韩精品国产自在久久现线拍| 久久人人爽人人爽人人爽| 久久久久国产精品三级网| 波多野结衣久久精品| 亚洲熟妇无码另类久久久| 91久久精品91久久性色| 欧美激情精品久久久久久久九九九| 亚洲国产成人精品91久久久| 精品久久人妻av中文字幕| 久久久精品视频免费观看| 波多野结衣AV无码久久一区| 久久精品人人做人人爽电影| 欧美日韩久久中文字幕| 青青青伊人色综合久久| 亚洲国产精品高清久久久| 久久93精品国产91久久综合| 久久午夜无码鲁丝片| 欧美亚洲国产精品久久| 国产69精品久久久久9999| 久久无码人妻一区二区三区 | 狼狼综合久久久久综合网| 久久精品亚洲福利| 一级做a爰片久久毛片16| 精品久久久无码人妻中文字幕| 99久久精品无码一区二区毛片| 久久久久亚洲av无码专区喷水| 亚洲日韩欧美一区久久久久我| 国产一区二区精品久久岳| 狠狠狠色丁香婷婷综合久久俺| 香蕉久久夜色精品升级完成| 久久精品国产欧美日韩99热| 久久久久无码国产精品不卡| 国产69精品久久久久99| 亚洲国产精品人久久| 国产精品狼人久久久久影院| 久久国产一区二区| 国产A级毛片久久久精品毛片| 99久久精品国内| 国产91久久综合| 国产精品永久久久久久久久久 |