• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks
            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted on 2016-02-28 21:01 bigrabbit 閱讀(338) 評論(0)  編輯 收藏 引用
            久久亚洲国产欧洲精品一| 久久精品国产亚洲Aⅴ香蕉| 一本久道久久综合狠狠爱| 天堂久久天堂AV色综合| 国产成人久久精品麻豆一区| 一本大道久久东京热无码AV| 精品久久8x国产免费观看| 久久精品国产精品亜洲毛片| 亚洲国产成人久久笫一页| 亚洲综合熟女久久久30p| 青青草国产成人久久91网| 亚洲精品99久久久久中文字幕| 久久精品国产亚洲av麻豆小说 | 久久精品夜色噜噜亚洲A∨| 久久精品国产亚洲AV久| 国产亚洲成人久久| 国产精品久久久久久久久| 久久久久国产精品人妻| 精品久久久久久国产牛牛app| 久久国产乱子伦免费精品| 中文字幕无码av激情不卡久久| 99久久精品国产高清一区二区| 日韩人妻无码一区二区三区久久99| 99久久精品免费看国产免费| 亚洲va国产va天堂va久久| 中文字幕无码久久人妻| 久久婷婷五月综合色99啪ak| www亚洲欲色成人久久精品| 国产精品岛国久久久久| 久久精品欧美日韩精品| 欧美va久久久噜噜噜久久| 久久久久精品国产亚洲AV无码| 亚洲一区精品伊人久久伊人 | 少妇人妻88久久中文字幕| 亚洲午夜久久久影院伊人| 久久久久亚洲AV片无码下载蜜桃| 亚洲国产成人精品久久久国产成人一区二区三区综 | 亚洲午夜久久久影院伊人| 亚洲中文字幕久久精品无码APP| 午夜精品久久久久9999高清| 欧美日韩精品久久久免费观看|