• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks
            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓(xùn)練集;Extremely randomized trees隨機(jī)選一個(gè)特征和一個(gè)值作為分割標(biāo)準(zhǔn);

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個(gè)特征,每個(gè)特征隨機(jī)選一個(gè)值作為分割標(biāo)準(zhǔn)建樹。

              一種實(shí)現(xiàn)方法:
                     樣本bagging, random n features & random k values ,求最優(yōu),建樹。 

            posted on 2016-02-28 21:01 bigrabbit 閱讀(330) 評論(0)  編輯 收藏 引用
            久久毛片一区二区| 久久天堂电影网| 久久99久久99精品免视看动漫| 国产99久久久国产精品~~牛| 欧美粉嫩小泬久久久久久久| 亚洲精品美女久久久久99| 久久er国产精品免费观看2| 亚洲v国产v天堂a无码久久| 国产成人精品久久一区二区三区| 国产AⅤ精品一区二区三区久久| 亚洲午夜精品久久久久久浪潮 | 精品久久久久久综合日本| 国内精品久久久久久久久电影网| 久久婷婷五月综合成人D啪| 色成年激情久久综合| 三级三级久久三级久久| 国产精品xxxx国产喷水亚洲国产精品无码久久一区 | 怡红院日本一道日本久久| 精品久久综合1区2区3区激情| 久久精品国产99久久久古代| 久久93精品国产91久久综合| 91精品国产高清久久久久久io| 久久人人爽人人爽人人片AV不| 国产99久久久国产精免费| 国产精品久久久久jk制服| 久久精品一本到99热免费| 久久亚洲中文字幕精品一区四 | 久久av高潮av无码av喷吹| 99精品久久精品| 国产精品久久波多野结衣| 久久久亚洲欧洲日产国码aⅴ| 一日本道伊人久久综合影| 欧美激情精品久久久久久| 国产精品亚洲综合专区片高清久久久| 久久精品九九亚洲精品| 久久久久久久久久久久中文字幕| 欧美日韩精品久久久免费观看| 欧美久久久久久| 亚洲AV日韩AV天堂久久| 色偷偷88888欧美精品久久久| 香蕉久久夜色精品升级完成|