• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks
            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted on 2016-02-28 21:01 bigrabbit 閱讀(327) 評論(0)  編輯 收藏 引用
            亚洲AV日韩精品久久久久| 色天使久久综合网天天| 无码人妻久久一区二区三区免费丨 | 免费观看成人久久网免费观看| 99久久这里只有精品| 99久久精品无码一区二区毛片| 国产三级精品久久| 伊人精品久久久久7777| 久久精品夜夜夜夜夜久久| 国产成人精品久久一区二区三区av| 久久精品这里只有精99品| 午夜欧美精品久久久久久久| 91久久成人免费| 亚洲国产精品无码成人片久久| 97精品国产97久久久久久免费| 久久精品视频一| 亚洲国产精品久久66| 国产成人精品久久| 久久久久久久国产免费看| 777米奇久久最新地址| 久久99久久99精品免视看动漫| 国产精品无码久久四虎| 91精品国产91久久久久福利| 少妇高潮惨叫久久久久久| 伊人久久大香线蕉综合5g| 久久精品国产一区二区| 久久香蕉综合色一综合色88| 香蕉久久夜色精品升级完成| 久久这里只精品99re66| 久久久受www免费人成| 国产成人久久久精品二区三区| av国内精品久久久久影院| 日日狠狠久久偷偷色综合免费| 久久99精品久久久久久hb无码| 一级女性全黄久久生活片免费 | 2021久久精品国产99国产精品| 99久久国产宗和精品1上映| 久久久噜噜噜久久中文字幕色伊伊| 久久久久久久久久久免费精品| 成人精品一区二区久久| 草草久久久无码国产专区|