• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆-14  評論-8  文章-0  trackbacks-0

                 題目及解題程序給在末尾,先來看看排列一個數組的方法。

                 給定一個數組 array[] = {3, 1, 2, 4, 0}; 這個給定的數組有目的性,即它符合 n * m 的規則,這里是 5 * 5(5個元素,5個連續且不同的值)。按我想到的一般的方法,就是使用循環來求出各種排列的可能,但這種方法不能確保每個元素只出現一次,且隨著元素個數的增長,循環深度將變得很深。繼續想下去,這種方法將會變得很復雜,這就要求我尋找另外一種方法。注意到每個元素并不相同,那么要使各個元素在每個位置上只出現一次,很明顯的一種方法就是“彩票機讀票法”。比如數據讀入口在第一個元素的位置,那么依次循環這個數組,每次使后面的元素向前移動一位,各個數字不就都讀到了嗎,這就像在打印機中滾動的紙。具體步驟如下:

            31240
            12403 <—rotate

                 第一位如此,那么后面的每一位也如此,也就是遞歸地處理后面的數字,每移動一位就以下一位為起點做相同的處理,直到所有數字循環了一遍,那排列的工作也就完成了。一個具體的實現如下:

            /*
             * @param r:     需要求其排列的向量
             * @param iPos:  當前所進行到的位置
             * 程序體中的注釋表示處于那個位置的向量都是一個新的且唯一的排列
            */
            void rotate(vector<int>& r, int iPos) {
            
                if(iPos == r.size() - 1)//是否循環完畢,調用函數時 iPos 置0
                    return;
            
                int iNextPos = iPos + 1;
                for(size_t i = iPos; i < r.size(); ++i) {
                    if(i == 0) {
                        //a different permutation, do something here
                    }
            
                    int t = r[iPos];
                    for(size_t j = iPos; j < r.size() - 1; ++j)//循環前移
                        r[j] = r[j + 1];
                    r[r.size() - 1] = t;
            
                    if(i != r.size() - 1) {
                        //a different permutation, do something here
                    }
            
                    rotate(r, iNextPos);//從下一位數字開始新的位移
                }
            }
               這種方法不要求數字式連續的,也不用事先規定好向量的長度。只是當向量長度到了一定的時候,運算時間會很長!其它方法未知……
               topcoder 上的練習題如下:

            Problem Statement

            A permutation A[0], A[1], ..., A[N-1] is a sequence containing each integer between 0 and N-1, inclusive, exactly once. Each permutation A of length N has a corresponding child array B of the same length, where B is defined as follows:
            B[0] = 0
            B[i] = A[B[i-1]], for every i between 1 and N-1, inclusive.
            A permutation is considered perfect if its child array is also a permutation.  Below are given all permutations for N=3 with their child arrays. Note that for two of these permutations ({1, 2, 0} and {2, 0, 1}) the child array is also a permutation, so these two permutations are perfect.
            Permutation        Child array
            {0, 1, 2}        {0, 0, 0}
            {0, 2, 1}        {0, 0, 0}
            {1, 0, 2}        {0, 1, 0}
            {1, 2, 0}        {0, 1, 2}
            {2, 0, 1}        {0, 2, 1}
            {2, 1, 0}        {0, 2, 0}
            You are given a vector <int> P containing a permutation of length N. Find a perfect permutation Q of the same length such that the difference between P and Q is as small as possible, and return this difference. The difference between P and Q is the number of indices i for which P[i] and Q[i] are different.
            Definition

            Class:
            PerfectPermutation
            Method:
            reorder
            Parameters:
            vector <int>
            Returns:
            int
            Method signature:
            int reorder(vector <int> P)
            (be sure your method is public)

            Constraints
            -
            P will contain between 1 and 50 elements, inclusive.
            -
            P will contain each integer between 0 and N-1, inclusive, exactly once, where N is the number of elements in P.
            Examples

            0)
            {2, 0, 1}
            Returns: 0
            P is a perfect permutation, so we can use the same permutation for Q. The difference is then 0 because P and Q are the same.

            1)
            {2, 0, 1, 4, 3}
            Returns: 2
            Q might be {2, 0, 3, 4, 1}.

            2)
            {2, 3, 0, 1}
            Returns: 2
            Q might be {1, 3, 0, 2}.

            3)
            {0, 5, 3, 2, 1, 4}
            Returns: 3

            4)
            {4, 2, 6, 0, 3, 5, 9, 7, 8, 1}
            Returns: 5

            This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

                我的解答如下:
            #include <iostream>
            #include <vector>
            #include <cstddef>
            #include <limits>
            #include <cassert>
            
            #include <boost\assign.hpp>    // for vector +=
            
            using namespace std;
            
            class PerfectPermutation {
            public:
                int  reorder(const vector<int>& P, vector<int>& result);
                bool isPerfect(const vector<int>& P);
            
            private:
                int  difference(const vector<int>& P, const vector<int>& Q);
                void rotate(const vector<int>& src, vector<int>& r, int level, int& nMin, vector<int>& out);
            };
            
            int PerfectPermutation::difference(const vector<int>& P, const vector<int>& Q) {
            
                size_t cDiff = P.size();
                assert(cDiff == Q.size());
            
                for(size_t i = 0; i < P.size(); ++i) {
                    if(P[i] == Q[i])
                        cDiff--;
                }
            
                return cDiff;
            }
            
            bool PerfectPermutation::isPerfect(const vector<int>& A) {
            
                int Bi = 0, Bi_1 = 0;
                vector<bool> vb(A.size());
                vb[0] = true;
            
                for(size_t i = 1; i < A.size(); ++i) {
                    if(vb[Bi = A[Bi_1]])
                        return false;
                    else
                        vb[Bi] = true;
            
                    Bi_1 = Bi;
                }
            
                return true;
            }
            
            void PerfectPermutation::rotate(const vector<int>& src, vector<int>& r, int level, int& nMin, vector<int>& out) {
            
                if(level == r.size() - 1)
                    return;
            
                int in = level + 1;
                for(size_t i = level; i < r.size(); ++i) {
                    if(i == 0 && isPerfect(r)) {
                        nMin = min(difference(src, r), nMin);
                        out = r;
                    }
            
                    int t = r[level];
                    for(size_t j = level; j < r.size() - 1; ++j)
                        r[j] = r[j + 1];
                    r[r.size() - 1] = t;
            
                    if((i != r.size() - 1) && isPerfect(r)) {
                        nMin = min(difference(src, r), nMin);
                        out = r;
                    }
            
                    rotate(src, r, in, nMin, out);
                }
            }
            
            int PerfectPermutation::reorder(const vector<int>& P, vector<int>& result) {
            
                if(P.size() == 1 || isPerfect(P))
                    return 0;
            
                int nMin = numeric_limits<int>::max();
            
                vector<int> Q(P);
            
                rotate(P, Q, 0, nMin, result);
            
                return nMin == numeric_limits<int>::max() ? -1 : nMin;
            }
            int main() {
            
                using namespace boost::assign;
            
                PerfectPermutation pp;
            
                vector<int> P;
                P += 2, 0, 1, 4, 3;
                vector<int> result(P.size());
            
                cout << "Is a perfect Permutation :                    " << (pp.isPerfect(P) ? "Yes" : "No") << endl;
                cout << "Difference between before reorder and after : " << pp.reorder(P, result) << endl;
                assert(pp.isPerfect(result));
                cout << "One answer might be :                         ";
                for(size_t i = 0; i < result.size(); ++i)
                    cout << result[i] << " ";
                cout << endl;
            
                return 0;
            }
            posted on 2009-12-19 20:53 崇文 閱讀(2060) 評論(0)  編輯 收藏 引用
            久久强奷乱码老熟女网站| 97精品依人久久久大香线蕉97| …久久精品99久久香蕉国产| 久久精品国产亚洲麻豆| 久久精品国产WWW456C0M| 国产精品久久婷婷六月丁香| 久久精品www人人爽人人| 国产成人99久久亚洲综合精品 | 久久青青草原综合伊人| 国内精品久久久久久久coent| 亚洲va久久久久| 日本福利片国产午夜久久| 国内精品久久久久影院薰衣草| 日本福利片国产午夜久久| 欧美日韩久久中文字幕| 伊人久久免费视频| 久久青青草原亚洲av无码app | 热99RE久久精品这里都是精品免费| 久久人爽人人爽人人片AV| 亚洲精品综合久久| 精品久久久久中文字幕一区| 精品熟女少妇a∨免费久久| 国产精品中文久久久久久久| 久久人妻少妇嫩草AV无码蜜桃| 97热久久免费频精品99| 伊人久久大香线蕉av一区| 老男人久久青草av高清| 亚洲精品国产自在久久| 久久人搡人人玩人妻精品首页| 欧美久久精品一级c片片| 色综合久久中文色婷婷| 国产精品久久一区二区三区| 2021久久精品国产99国产精品| 国产精品99精品久久免费| 精品少妇人妻av无码久久| 99久久99久久精品免费看蜜桃| 色88久久久久高潮综合影院| 热re99久久精品国99热| 国内精品人妻无码久久久影院| 久久777国产线看观看精品| 国产69精品久久久久99尤物|