• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆-14  評論-8  文章-0  trackbacks-0

                 題目及解題程序給在末尾,先來看看排列一個數組的方法。

                 給定一個數組 array[] = {3, 1, 2, 4, 0}; 這個給定的數組有目的性,即它符合 n * m 的規則,這里是 5 * 5(5個元素,5個連續且不同的值)。按我想到的一般的方法,就是使用循環來求出各種排列的可能,但這種方法不能確保每個元素只出現一次,且隨著元素個數的增長,循環深度將變得很深。繼續想下去,這種方法將會變得很復雜,這就要求我尋找另外一種方法。注意到每個元素并不相同,那么要使各個元素在每個位置上只出現一次,很明顯的一種方法就是“彩票機讀票法”。比如數據讀入口在第一個元素的位置,那么依次循環這個數組,每次使后面的元素向前移動一位,各個數字不就都讀到了嗎,這就像在打印機中滾動的紙。具體步驟如下:

            31240
            12403 <—rotate

                 第一位如此,那么后面的每一位也如此,也就是遞歸地處理后面的數字,每移動一位就以下一位為起點做相同的處理,直到所有數字循環了一遍,那排列的工作也就完成了。一個具體的實現如下:

            /*
             * @param r:     需要求其排列的向量
             * @param iPos:  當前所進行到的位置
             * 程序體中的注釋表示處于那個位置的向量都是一個新的且唯一的排列
            */
            void rotate(vector<int>& r, int iPos) {
            
                if(iPos == r.size() - 1)//是否循環完畢,調用函數時 iPos 置0
                    return;
            
                int iNextPos = iPos + 1;
                for(size_t i = iPos; i < r.size(); ++i) {
                    if(i == 0) {
                        //a different permutation, do something here
                    }
            
                    int t = r[iPos];
                    for(size_t j = iPos; j < r.size() - 1; ++j)//循環前移
                        r[j] = r[j + 1];
                    r[r.size() - 1] = t;
            
                    if(i != r.size() - 1) {
                        //a different permutation, do something here
                    }
            
                    rotate(r, iNextPos);//從下一位數字開始新的位移
                }
            }
               這種方法不要求數字式連續的,也不用事先規定好向量的長度。只是當向量長度到了一定的時候,運算時間會很長!其它方法未知……
               topcoder 上的練習題如下:

            Problem Statement

            A permutation A[0], A[1], ..., A[N-1] is a sequence containing each integer between 0 and N-1, inclusive, exactly once. Each permutation A of length N has a corresponding child array B of the same length, where B is defined as follows:
            B[0] = 0
            B[i] = A[B[i-1]], for every i between 1 and N-1, inclusive.
            A permutation is considered perfect if its child array is also a permutation.  Below are given all permutations for N=3 with their child arrays. Note that for two of these permutations ({1, 2, 0} and {2, 0, 1}) the child array is also a permutation, so these two permutations are perfect.
            Permutation        Child array
            {0, 1, 2}        {0, 0, 0}
            {0, 2, 1}        {0, 0, 0}
            {1, 0, 2}        {0, 1, 0}
            {1, 2, 0}        {0, 1, 2}
            {2, 0, 1}        {0, 2, 1}
            {2, 1, 0}        {0, 2, 0}
            You are given a vector <int> P containing a permutation of length N. Find a perfect permutation Q of the same length such that the difference between P and Q is as small as possible, and return this difference. The difference between P and Q is the number of indices i for which P[i] and Q[i] are different.
            Definition

            Class:
            PerfectPermutation
            Method:
            reorder
            Parameters:
            vector <int>
            Returns:
            int
            Method signature:
            int reorder(vector <int> P)
            (be sure your method is public)

            Constraints
            -
            P will contain between 1 and 50 elements, inclusive.
            -
            P will contain each integer between 0 and N-1, inclusive, exactly once, where N is the number of elements in P.
            Examples

            0)
            {2, 0, 1}
            Returns: 0
            P is a perfect permutation, so we can use the same permutation for Q. The difference is then 0 because P and Q are the same.

            1)
            {2, 0, 1, 4, 3}
            Returns: 2
            Q might be {2, 0, 3, 4, 1}.

            2)
            {2, 3, 0, 1}
            Returns: 2
            Q might be {1, 3, 0, 2}.

            3)
            {0, 5, 3, 2, 1, 4}
            Returns: 3

            4)
            {4, 2, 6, 0, 3, 5, 9, 7, 8, 1}
            Returns: 5

            This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

                我的解答如下:
            #include <iostream>
            #include <vector>
            #include <cstddef>
            #include <limits>
            #include <cassert>
            
            #include <boost\assign.hpp>    // for vector +=
            
            using namespace std;
            
            class PerfectPermutation {
            public:
                int  reorder(const vector<int>& P, vector<int>& result);
                bool isPerfect(const vector<int>& P);
            
            private:
                int  difference(const vector<int>& P, const vector<int>& Q);
                void rotate(const vector<int>& src, vector<int>& r, int level, int& nMin, vector<int>& out);
            };
            
            int PerfectPermutation::difference(const vector<int>& P, const vector<int>& Q) {
            
                size_t cDiff = P.size();
                assert(cDiff == Q.size());
            
                for(size_t i = 0; i < P.size(); ++i) {
                    if(P[i] == Q[i])
                        cDiff--;
                }
            
                return cDiff;
            }
            
            bool PerfectPermutation::isPerfect(const vector<int>& A) {
            
                int Bi = 0, Bi_1 = 0;
                vector<bool> vb(A.size());
                vb[0] = true;
            
                for(size_t i = 1; i < A.size(); ++i) {
                    if(vb[Bi = A[Bi_1]])
                        return false;
                    else
                        vb[Bi] = true;
            
                    Bi_1 = Bi;
                }
            
                return true;
            }
            
            void PerfectPermutation::rotate(const vector<int>& src, vector<int>& r, int level, int& nMin, vector<int>& out) {
            
                if(level == r.size() - 1)
                    return;
            
                int in = level + 1;
                for(size_t i = level; i < r.size(); ++i) {
                    if(i == 0 && isPerfect(r)) {
                        nMin = min(difference(src, r), nMin);
                        out = r;
                    }
            
                    int t = r[level];
                    for(size_t j = level; j < r.size() - 1; ++j)
                        r[j] = r[j + 1];
                    r[r.size() - 1] = t;
            
                    if((i != r.size() - 1) && isPerfect(r)) {
                        nMin = min(difference(src, r), nMin);
                        out = r;
                    }
            
                    rotate(src, r, in, nMin, out);
                }
            }
            
            int PerfectPermutation::reorder(const vector<int>& P, vector<int>& result) {
            
                if(P.size() == 1 || isPerfect(P))
                    return 0;
            
                int nMin = numeric_limits<int>::max();
            
                vector<int> Q(P);
            
                rotate(P, Q, 0, nMin, result);
            
                return nMin == numeric_limits<int>::max() ? -1 : nMin;
            }
            int main() {
            
                using namespace boost::assign;
            
                PerfectPermutation pp;
            
                vector<int> P;
                P += 2, 0, 1, 4, 3;
                vector<int> result(P.size());
            
                cout << "Is a perfect Permutation :                    " << (pp.isPerfect(P) ? "Yes" : "No") << endl;
                cout << "Difference between before reorder and after : " << pp.reorder(P, result) << endl;
                assert(pp.isPerfect(result));
                cout << "One answer might be :                         ";
                for(size_t i = 0; i < result.size(); ++i)
                    cout << result[i] << " ";
                cout << endl;
            
                return 0;
            }
            posted on 2009-12-19 20:53 崇文 閱讀(2050) 評論(0)  編輯 收藏 引用
            东方aⅴ免费观看久久av| 久久免费观看视频| 国内精品久久久久久99蜜桃| 香蕉久久夜色精品国产小说| 久久久久久久久久免免费精品| 久久天天躁狠狠躁夜夜不卡| 国产精品女同久久久久电影院| 国产毛片久久久久久国产毛片 | 国产一久久香蕉国产线看观看| 九九久久精品无码专区| 久久精品夜色噜噜亚洲A∨| 天堂久久天堂AV色综合 | 欧美噜噜久久久XXX| 99久久婷婷国产一区二区| 狠狠色噜噜色狠狠狠综合久久| 中文精品久久久久国产网址| 亚洲精品乱码久久久久久自慰| 久久www免费人成精品香蕉| 久久99精品久久久久久hb无码| 免费一级欧美大片久久网| 热99re久久国超精品首页| 人妻无码中文久久久久专区| 亚洲国产成人久久综合野外| 国产成人久久精品二区三区| AAA级久久久精品无码片| 少妇久久久久久被弄高潮| 国产精品乱码久久久久久软件 | 欧美日韩中文字幕久久久不卡| 99久久婷婷国产综合亚洲| 少妇精品久久久一区二区三区| 久久久久久国产a免费观看黄色大片| 久久久久综合中文字幕| 久久综合久久美利坚合众国| 欧美伊人久久大香线蕉综合69| 精品久久久久久无码人妻蜜桃| 久久精品一区二区| 粉嫩小泬无遮挡久久久久久| 精品久久久久久久无码 | 成人a毛片久久免费播放| 久久狠狠高潮亚洲精品| av无码久久久久不卡免费网站 |