• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 18,  comments - 5,  trackbacks - 0

            一、題目描述

            Description

            It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

            The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

            Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

            So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

            Input

            The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

            Output

            One line, consisting of an integer, which gives the minimum number of roads that we need to add.

            Sample Input

            Sample Input 1
            10 12
            1 2
            1 3
            1 4
            2 5
            2 6
            5 6
            3 7
            3 8
            7 8
            4 9
            4 10
            9 10
            Sample Input 2
            3 3
            1 2
            2 3
            1 3

            Sample Output

            Output for Sample Input 1
            2
            Output for Sample Input 2
            0
            


            二、分析
                  用DFS解決問題,詳細算法:割點與橋
            三、代碼

             1#include<iostream>
             2#include<list>
             3using namespace std;
             4int n, r;
             5list<int> g[1001];
             6int num, lab[1001], low[1001];
             7list<pair<intint> > edge;
             8int degree[1001];
             9int parent[1001], rank[1001];
            10void init_set()
            11{
            12    for(int i=1; i<1001; i++)
            13    {
            14        parent[i] = i;
            15        rank[i] = 1;
            16    }

            17}

            18int find(int k)
            19{
            20    if(parent[k] == k) 
            21        return k;
            22    else
            23        return parent[k] = find(parent[k]);
            24}

            25void union_set(int u, int v)
            26{
            27    int pu = find(u), pv = find(v);
            28    if(rank[pu] <= rank[pv])
            29    {
            30        parent[pu] = pv;
            31        rank[pv] += pu;
            32    }

            33    else
            34    {
            35        parent[pv] = pu;
            36        rank[pu] += pv;
            37    }

            38}

            39void dfs(int u, int p)
            40{
            41    lab[u] = low[u] = num++;
            42    list<int>::iterator it;
            43    for(it = g[u].begin(); it != g[u].end(); it++)
            44    {
            45        int v = *it;
            46        if(lab[v] == 0)
            47        {
            48            dfs(v, u);
            49            low[u] = min(low[u], low[v]);
            50            if(low[v] > lab[u])
            51                edge.push_back(make_pair(u, v));
            52            else
            53                union_set(u, v); //u與v能進行縮點
            54        }

            55        else if(v != p)
            56            low[u] = min(low[u], lab[v]);
            57    }

            58}

            59int main()
            60{
            61    scanf("%d%d"&n, &r);
            62    for(int i=1; i<=n; i++)
            63        g[i].clear();
            64    for(int i=1; i<=r; i++)
            65    {
            66        int v1, v2;
            67        scanf("%d%d"&v1, &v2);
            68        g[v1].push_back(v2);
            69        g[v2].push_back(v1);
            70    }

            71    memset(lab, 0sizeof lab);
            72    memset(low, 0x7fsizeof low);
            73    num = 1;
            74    init_set();
            75    dfs(10);
            76    memset(degree, 0sizeof degree);
            77    list<pair<intint> >::iterator it;
            78    int res = 0;
            79    for(it = edge.begin(); it != edge.end(); it++)
            80    {
            81        int u = it->first, v = it->second;
            82        degree[find(u)]++;
            83        if(degree[find(u)] == 1)
            84            res++;
            85        else if(degree[find(u)] == 2)
            86            res--;
            87        degree[find(v)]++;
            88        if(degree[find(v)] == 1)
            89            res++;
            90        else if(degree[find(v)] == 2)
            91            res--;
            92    }

            93    printf("%d\n", (res+1/ 2);
            94}
            posted on 2009-07-05 16:08 Icyflame 閱讀(1421) 評論(0)  編輯 收藏 引用 所屬分類: 解題報告
            免费久久人人爽人人爽av| 欧美成a人片免费看久久| 性高朝久久久久久久久久| 三级三级久久三级久久| 久久精品中文无码资源站| 办公室久久精品| 久久久久av无码免费网| 久久亚洲国产精品成人AV秋霞 | 少妇熟女久久综合网色欲| 91久久精品国产免费直播| 亚洲欧美国产日韩综合久久| 久久精品夜夜夜夜夜久久| 久久午夜福利电影| 久久精品国产亚洲av高清漫画| 97久久精品人人澡人人爽| 亚洲中文久久精品无码ww16| 久久不见久久见免费影院www日本| 久久精品国产亚洲av麻豆色欲| 久久久久国产一级毛片高清板| 国产成人无码精品久久久免费| 少妇熟女久久综合网色欲| 久久久久97国产精华液好用吗| 精品一二三区久久aaa片| 日韩精品无码久久一区二区三| 97久久香蕉国产线看观看| 麻豆av久久av盛宴av| 久久精品国产亚洲精品| 婷婷综合久久狠狠色99h| 久久久青草久久久青草| 久久精品亚洲一区二区三区浴池| 无码人妻少妇久久中文字幕| 国产精品日韩欧美久久综合| 久久青青草原综合伊人| AV无码久久久久不卡蜜桃| 久久综合色区| 久久WWW免费人成—看片| 久久国产美女免费观看精品| 国产成人精品久久亚洲高清不卡 国产成人精品久久亚洲高清不卡 国产成人精品久久亚洲 | 久久99国产精品久久99小说| 欧美午夜A∨大片久久| 免费一级做a爰片久久毛片潮|