• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 18,  comments - 5,  trackbacks - 0

            一、題目描述

            Description

            It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

            The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

            Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

            So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

            Input

            The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

            Output

            One line, consisting of an integer, which gives the minimum number of roads that we need to add.

            Sample Input

            Sample Input 1
            10 12
            1 2
            1 3
            1 4
            2 5
            2 6
            5 6
            3 7
            3 8
            7 8
            4 9
            4 10
            9 10
            Sample Input 2
            3 3
            1 2
            2 3
            1 3

            Sample Output

            Output for Sample Input 1
            2
            Output for Sample Input 2
            0
            


            二、分析
                  用DFS解決問題,詳細算法:割點與橋
            三、代碼

             1#include<iostream>
             2#include<list>
             3using namespace std;
             4int n, r;
             5list<int> g[1001];
             6int num, lab[1001], low[1001];
             7list<pair<intint> > edge;
             8int degree[1001];
             9int parent[1001], rank[1001];
            10void init_set()
            11{
            12    for(int i=1; i<1001; i++)
            13    {
            14        parent[i] = i;
            15        rank[i] = 1;
            16    }

            17}

            18int find(int k)
            19{
            20    if(parent[k] == k) 
            21        return k;
            22    else
            23        return parent[k] = find(parent[k]);
            24}

            25void union_set(int u, int v)
            26{
            27    int pu = find(u), pv = find(v);
            28    if(rank[pu] <= rank[pv])
            29    {
            30        parent[pu] = pv;
            31        rank[pv] += pu;
            32    }

            33    else
            34    {
            35        parent[pv] = pu;
            36        rank[pu] += pv;
            37    }

            38}

            39void dfs(int u, int p)
            40{
            41    lab[u] = low[u] = num++;
            42    list<int>::iterator it;
            43    for(it = g[u].begin(); it != g[u].end(); it++)
            44    {
            45        int v = *it;
            46        if(lab[v] == 0)
            47        {
            48            dfs(v, u);
            49            low[u] = min(low[u], low[v]);
            50            if(low[v] > lab[u])
            51                edge.push_back(make_pair(u, v));
            52            else
            53                union_set(u, v); //u與v能進行縮點
            54        }

            55        else if(v != p)
            56            low[u] = min(low[u], lab[v]);
            57    }

            58}

            59int main()
            60{
            61    scanf("%d%d"&n, &r);
            62    for(int i=1; i<=n; i++)
            63        g[i].clear();
            64    for(int i=1; i<=r; i++)
            65    {
            66        int v1, v2;
            67        scanf("%d%d"&v1, &v2);
            68        g[v1].push_back(v2);
            69        g[v2].push_back(v1);
            70    }

            71    memset(lab, 0sizeof lab);
            72    memset(low, 0x7fsizeof low);
            73    num = 1;
            74    init_set();
            75    dfs(10);
            76    memset(degree, 0sizeof degree);
            77    list<pair<intint> >::iterator it;
            78    int res = 0;
            79    for(it = edge.begin(); it != edge.end(); it++)
            80    {
            81        int u = it->first, v = it->second;
            82        degree[find(u)]++;
            83        if(degree[find(u)] == 1)
            84            res++;
            85        else if(degree[find(u)] == 2)
            86            res--;
            87        degree[find(v)]++;
            88        if(degree[find(v)] == 1)
            89            res++;
            90        else if(degree[find(v)] == 2)
            91            res--;
            92    }

            93    printf("%d\n", (res+1/ 2);
            94}
            posted on 2009-07-05 16:08 Icyflame 閱讀(1415) 評論(0)  編輯 收藏 引用 所屬分類: 解題報告
            久久99精品久久久久子伦| 亚洲中文字幕无码久久2017| 91久久成人免费| 无码任你躁久久久久久老妇App| 久久这里有精品| 久久精品成人国产午夜| 亚洲?V乱码久久精品蜜桃| 欧美噜噜久久久XXX| 国产亚洲成人久久| 国内精品久久久久影院一蜜桃| 国产免费久久久久久无码| 久久影院综合精品| 久久天天躁狠狠躁夜夜avapp| 高清免费久久午夜精品| 国产偷久久久精品专区| 久久伊人色| 久久精品国产福利国产秒| 热re99久久精品国99热| 一级做a爰片久久毛片毛片| 国产69精品久久久久99| 久久九九精品99国产精品| 奇米影视7777久久精品人人爽| 国产三级精品久久| 国产精品久久久久无码av| 亚洲精品无码久久久久sm| 久久综合九色综合网站| 久久av高潮av无码av喷吹| 久久久久四虎国产精品| 久久精品国产网红主播| 久久精品亚洲一区二区三区浴池| 亚洲精品午夜国产VA久久成人 | 国产99久久久久久免费看| 亚洲人成精品久久久久| 久久婷婷色综合一区二区| 亚洲愉拍99热成人精品热久久| 久久中文字幕人妻熟av女| 久久久亚洲AV波多野结衣| 久久婷婷国产综合精品| 国产精品久久久久久搜索| 情人伊人久久综合亚洲| 久久本道久久综合伊人|